Display options
Share it on

Sci Rep. 2016 Jul 20;6:30074. doi: 10.1038/srep30074.

Switching of magnetic easy-axis using crystal orientation for large perpendicular coercivity in CoFe2O4 thin film.

Scientific reports

Sagar E Shirsath, Xiaoxi Liu, Yukiko Yasukawa, Sean Li, Akimitsu Morisako

Affiliations

  1. Spin Device Technology Center, Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan.
  2. School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2502, Australia.

PMID: 27435010 PMCID: PMC4951806 DOI: 10.1038/srep30074

Abstract

Perpendicular magnetization and precise control over the magnetic easy axis in magnetic thin film is necessary for a variety of applications, particularly in magnetic recording media. A strong (111) orientation is successfully achieved in the CoFe2O4 (CFO) thin film at relatively low substrate temperature of 100 °C, whereas the (311)-preferred randomly oriented CFO is prepared at room temperature by the DC magnetron sputtering technique. The oxygen-deficient porous CFO film after post-annealing gives rise to compressive strain perpendicular to the film surface, which induces large perpendicular coercivity. We observe the coercivity of 11.3 kOe in the 40-nm CFO thin film, which is the highest perpendicular coercivity ever achieved on an amorphous SiO2/Si substrate. The present approach can guide the systematic tuning of the magnetic easy axis and coercivity in the desired direction with respect to crystal orientation in the nanoscale regime. Importantly, this can be achieved on virtually any type of substrate.

References

  1. Nano Lett. 2006 Jul;6(7):1401-7 - PubMed
  2. Adv Mater. 2011 Aug 9;23(30):3363-81 - PubMed
  3. Science. 2000 Mar 17;287(5460):1989-92 - PubMed
  4. Nano Lett. 2012 Jul 11;12(7):3716-21 - PubMed
  5. Small. 2012 Apr 23;8(8):1279-84 - PubMed
  6. ACS Nano. 2010 Aug 24;4(8):4955-61 - PubMed
  7. Adv Mater. 2010 Jul 20;22(26-27):2900-18 - PubMed
  8. Nat Mater. 2012 Oct;11(10):888-94 - PubMed
  9. Nanotechnology. 2009 Mar 4;20(9):095203 - PubMed
  10. Nat Commun. 2013;4:2051 - PubMed
  11. Science. 2004 Jan 30;303(5658):661-3 - PubMed
  12. Nano Lett. 2010 Aug 11;10(8):3216-21 - PubMed
  13. ACS Nano. 2012 Jun 26;6(6):4876-83 - PubMed
  14. Nano Lett. 2010 Aug 11;10(8):2982-8 - PubMed
  15. Phys Rev Lett. 2011 Jul 29;107(5):057602 - PubMed
  16. Nano Lett. 2005 Sep;5(9):1793-6 - PubMed
  17. ACS Nano. 2007 Oct;1(3):228-33 - PubMed

Publication Types