Display options
Share it on

mSphere. 2015 Nov 18;1(1). doi: 10.1128/mSphere.00030-15. eCollection 2016.

A Three-Dimensional Cell Culture Model To Study Enterovirus Infection of Polarized Intestinal Epithelial Cells.

mSphere

Coyne G Drummond, Cheryl A Nickerson, Carolyn B Coyne

Affiliations

  1. Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.
  2. School of Life Sciences, Arizona State University, Tempe, Arizona, USA; The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, Arizona, USA.

PMID: 27303677 PMCID: PMC4863623 DOI: 10.1128/mSphere.00030-15

Abstract

Despite serving as the primary entry portal for coxsackievirus B (CVB), little is known about CVB infection of the intestinal epithelium, owing at least in part to the lack of suitable in vivo models and the inability of cultured cells to recapitulate the complexity and structure associated with the gastrointestinal (GI) tract. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of Caco-2 cells to model CVB infection of the gastrointestinal epithelium. We show that Caco-2 cells grown in 3-D using the rotating wall vessel (RWV) bioreactor recapitulate many of the properties of the intestinal epithelium, including the formation of well-developed tight junctions, apical-basolateral polarity, brush borders, and multicellular complexity. In addition, transcriptome analyses using transcriptome sequencing (RNA-Seq) revealed the induction of a number of genes associated with intestinal epithelial differentiation and/or intestinal processes in vivo when Caco-2 cells were cultured in 3-D. Applying this model to CVB infection, we found that although the levels of intracellular virus production were similar in two-dimensional (2-D) and 3-D Caco-2 cell cultures, the release of infectious CVB was enhanced in 3-D cultures at early stages of infection. Unlike CVB, the replication of poliovirus (PV) was significantly reduced in 3-D Caco-2 cell cultures. Collectively, our studies show that Caco-2 cells grown in 3-D using the RWV bioreactor provide a cell culture model that structurally and transcriptionally represents key aspects of cells in the human GI tract and can thus be used to expand our understanding of enterovirus-host interactions in intestinal epithelial cells. IMPORTANCE Coxsackievirus B (CVB), a member of the enterovirus family of RNA viruses, is associated with meningitis, pericarditis, diabetes, dilated cardiomyopathy, and myocarditis, among other pathologies. CVB is transmitted via the fecal-oral route and encounters the epithelium lining the gastrointestinal tract early in infection. The lack of suitable in vivo and in vitro models to study CVB infection of the gastrointestinal epithelium has limited our understanding of the events that surround infection of these specialized cells. Here, we report on the development of a three-dimensional (3-D) organotypic cell culture model of human intestinal epithelial cells that better models the gastrointestinal epithelium in vivo. By applying this 3-D model, which recapitulates many aspects of the gastrointestinal epithelium in vivo, to the study of CVB infection, our work provides a new cell system to model the mechanisms by which CVB infects the intestinal epithelium, which may have a profound impact on CVB pathogenesis. Podcast: A podcast concerning this article is available.

Keywords: 3-D cell culture; RWV bioreactor; coxsackievirus B; enterovirus; intestinal epithelial cell

References

  1. Cell Host Microbe. 2015 Aug 12;18(2):221-32 - PubMed
  2. J Virol. 2007 Aug;81(15):7902-12 - PubMed
  3. Int J Oncol. 2008 Sep;33(3):461-8 - PubMed
  4. Regul Pept. 2013 Nov 10;187:24-8 - PubMed
  5. J Virol. 2015 Apr;89(8):4311-8 - PubMed
  6. Infect Immun. 2000 Jun;68(6):3147-52 - PubMed
  7. J Exp Med. 1952 Nov;96(5):491-7 - PubMed
  8. Cell. 2006 Jan 13;124(1):119-31 - PubMed
  9. Autophagy. 2012 Jun;8(6):893-902 - PubMed
  10. Cell Cycle. 2004 May;3(5):554-7 - PubMed
  11. Cell Host Microbe. 2014 Jan 15;15(1):36-46 - PubMed
  12. Mol Biol Cell. 2011 Sep;22(17 ):3010-21 - PubMed
  13. J Exp Med. 1951 Jul 1;94(1):45-64 - PubMed
  14. J Biol Chem. 1999 Jan 1;274(1):7-10 - PubMed
  15. Virol J. 2009 Jul 15;6:103 - PubMed
  16. J Infect Dis. 1997 Mar;175(3):697-700 - PubMed
  17. Differentiation. 1993 Jun;53(2):95-104 - PubMed
  18. Nat Rev Microbiol. 2010 Nov;8(11):791-801 - PubMed
  19. Virology. 2015 May;479-480:450-6 - PubMed
  20. PLoS One. 2012;7(1):e29481 - PubMed
  21. Microbes Infect. 2006 Jun;8(7):1813-25 - PubMed
  22. PLoS One. 2013 Jun 03;8(6):e63485 - PubMed
  23. J Virol. 2009 Nov;83(21):11064-77 - PubMed
  24. Nature. 2013 Apr 18;496(7445):367-71 - PubMed
  25. J Cell Biol. 1994 Jun;125(6):1371-84 - PubMed
  26. Biochem Biophys Res Commun. 2001 Oct 5;287(4):814-9 - PubMed
  27. Cell. 1990 Oct 19;63(2):353-62 - PubMed
  28. Methods. 2007 Jan;41(1):118-22 - PubMed
  29. Cell Struct Funct. 2011;36(2):171-85 - PubMed
  30. J Tissue Cult Methods. 1992;14(2):51-7 - PubMed
  31. J Water Health. 2011 Jun;9(2):225-40 - PubMed
  32. Proc Natl Acad Sci U S A. 2014 Sep 9;111(36):13081-6 - PubMed
  33. Science. 1997 Feb 28;275(5304):1320-3 - PubMed
  34. J Virol. 1995 Mar;69(3):1903-6 - PubMed
  35. Proc Natl Acad Sci U S A. 2004 Apr 20;101(16):6110-5 - PubMed
  36. Nature. 2002 Jul 11;418(6894):191-5 - PubMed
  37. Development. 2002 Jun;129(11):2619-28 - PubMed
  38. Am J Physiol Gastrointest Liver Physiol. 2013 Sep 1;305(5):G341-7 - PubMed
  39. Am J Physiol. 1992 Mar;262(3 Pt 1):C795-800 - PubMed
  40. PLoS Pathog. 2014 Apr 10;10(4):e1004045 - PubMed
  41. Nat Med. 1998 Aug;4(8):901-7 - PubMed
  42. EMBO J. 2007 Sep 5;26(17):4016-28 - PubMed
  43. Cell Host Microbe. 2011 Jan 20;9(1):70-82 - PubMed
  44. Science. 2011 Oct 14;334(6053):249-52 - PubMed
  45. PLoS One. 2012;7(5):e37116 - PubMed
  46. Infect Immun. 2005 Feb;73(2):1129-40 - PubMed
  47. Emerg Infect Dis. 2007 Mar;13(3):396-403 - PubMed
  48. PLoS One. 2010 Dec 29;5(12):e15750 - PubMed
  49. Infect Immun. 2001 Nov;69(11):7106-20 - PubMed
  50. AIDS Res Hum Retroviruses. 1997 Nov 1;13(16):1411-20 - PubMed
  51. Cell. 1989 Mar 10;56(5):855-65 - PubMed
  52. Proc Natl Acad Sci U S A. 2012 Jul 31;109(31):12650-5 - PubMed
  53. Cancer Res. 2007 Oct 15;67(20):9677-84 - PubMed
  54. Virology. 1961 May;14:11-21 - PubMed
  55. Biochem Biophys Res Commun. 2002 Mar 1;291(3):466-75 - PubMed
  56. J Histochem Cytochem. 1993 Nov;41(11):1679-87 - PubMed
  57. Cell Host Microbe. 2007 Sep 13;2(3):181-92 - PubMed
  58. Arch Immunol Ther Exp (Warsz). 1975;23(2):241-5 - PubMed
  59. J Virol. 2013 Aug;87(15):8569-81 - PubMed
  60. J Virol. 2002 Sep;76(18):9474-80 - PubMed
  61. Genome Biol. 2014;15(12):550 - PubMed

Publication Types

Grant support