Display options
Share it on

mSphere. 2016 Mar 09;1(2). doi: 10.1128/mSphere.00041-15. eCollection 2016.

Highly Variable Streptococcus oralis Strains Are Common among Viridans Streptococci Isolated from Primates.

mSphere

Dalia Denapaite, Martin Rieger, Sophie Köndgen, Reinhold Brückner, Irma Ochigava, Peter Kappeler, Kerstin Mätz-Rensing, Fabian Leendertz, Regine Hakenbeck

Affiliations

  1. Department of Microbiology, University of Kaiserslautern, Kaiserslautern, Germany.
  2. Project Group 3 Epidemiology of Highly Pathogenic Microorganisms, Robert Koch-Institute, Berlin, Germany.
  3. Behavioral Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany.

PMID: 27303717 PMCID: PMC4863584 DOI: 10.1128/mSphere.00041-15

Abstract

Viridans streptococci were obtained from primates (great apes, rhesus monkeys, and ring-tailed lemurs) held in captivity, as well as from free-living animals (chimpanzees and lemurs) for whom contact with humans is highly restricted. Isolates represented a variety of viridans streptococci, including unknown species. Streptococcus oralis was frequently isolated from samples from great apes. Genotypic methods revealed that most of the strains clustered on separate lineages outside the main cluster of human S. oralis strains. This suggests that S. oralis is part of the commensal flora in higher primates and evolved prior to humans. Many genes described as virulence factors in Streptococcus pneumoniae were present also in other viridans streptococcal genomes. Unlike in S. pneumoniae, clustered regularly interspaced short palindromic repeat (CRISPR)-CRISPR-associated protein (Cas) gene clusters were common among viridans streptococci, and many S. oralis strains were type PI-2 (pilus islet 2) variants. S. oralis displayed a remarkable diversity of genes involved in the biosynthesis of peptidoglycan (penicillin-binding proteins and MurMN) and choline-containing teichoic acid. The small noncoding cia-dependent small RNAs (csRNAs) controlled by the response regulator CiaR might contribute to the genomic diversity, since we observed novel genomic islands between duplicated csRNAs, variably present in some isolates. All S. oralis genomes contained a β-N-acetyl-hexosaminidase gene absent in S. pneumoniae, which in contrast frequently harbors the neuraminidases NanB/C, which are absent in S. oralis. The identification of S. oralis-specific genes will help us to understand their adaptation to diverse habitats. IMPORTANCE Streptococcus pneumoniae is a rare example of a human-pathogenic bacterium among viridans streptococci, which consist of commensal symbionts, such as the close relatives Streptococcus mitis and S. oralis. We have shown that S. oralis can frequently be isolated from primates and a variety of other viridans streptococci as well. Genes and genomic islands which are known pneumococcal virulence factors are present in S. oralis and S. mitis, documenting the widespread occurrence of these compounds, which encode surface and secreted proteins. The frequent occurrence of CRISP-Cas gene clusters and a surprising variation of a set of small noncoding RNAs are factors to be considered in future research to further our understanding of mechanisms involved in the genomic diversity driven by horizontal gene transfer among viridans streptococci.

Keywords: Streptococcus oralis; horizontal gene transfer; primates; teichoic acid; viridans streptococci; virulence factors

References

  1. Future Microbiol. 2012 Mar;7(3):395-410 - PubMed
  2. J Bacteriol. 2000 Dec;182(23):6798-805 - PubMed
  3. MBio. 2014 Jul 22;5(4):e01490-14 - PubMed
  4. Nat Rev Microbiol. 2003 Dec;1(3):219-30 - PubMed
  5. J Infect Dis. 2009 Apr 1;199(7):1032-42 - PubMed
  6. Genome Announc. 2013 Jun 20;1(3):null - PubMed
  7. Infect Immun. 1999 Apr;67(4):1683-7 - PubMed
  8. J Bacteriol. 2009 Mar;191(5):1509-18 - PubMed
  9. Mol Microbiol. 2001 Jun;40(6):1273-87 - PubMed
  10. PLoS One. 2008 Jul 16;3(7):e2683 - PubMed
  11. Mol Microbiol. 1997 Sep;25(6):1113-24 - PubMed
  12. Clin Microbiol Infect. 2012 Jun;18(6):521-7 - PubMed
  13. J Biol Chem. 2012 Mar 30;287(14):11018-29 - PubMed
  14. Infect Immun. 2000 Oct;68(10):5889-900 - PubMed
  15. Sci Rep. 2015 Nov 18;5:16718 - PubMed
  16. J Biol Chem. 2008 Dec 12;283(50):34571-9 - PubMed
  17. BMC Bioinformatics. 2005 Nov 15;6:272 - PubMed
  18. J Bacteriol. 2005 Sep;187(17):6223-30 - PubMed
  19. Infect Immun. 2001 Apr;69(4):2477-86 - PubMed
  20. Infect Immun. 1989 Aug;57(8):2324-30 - PubMed
  21. Mol Microbiol. 2003 Jul;49(2):411-23 - PubMed
  22. PLoS One. 2010 Feb 25;5(2):e9426 - PubMed
  23. PLoS One. 2013 Oct 21;8(10):e78046 - PubMed
  24. Mol Microbiol. 2007 Oct;66(1):110-26 - PubMed
  25. Infect Immun. 2002 Aug;70(8):4059-67 - PubMed
  26. Infect Immun. 2008 Jun;76(6):2767-76 - PubMed
  27. Mol Microbiol. 1994 Jun;12(6):1013-23 - PubMed
  28. Infect Immun. 1999 Sep;67(9):4551-6 - PubMed
  29. Infect Immun. 1999 Sep;67(9):4720-4 - PubMed
  30. Front Genet. 2015 Jul 20;6:246 - PubMed
  31. Mol Biol Evol. 2013 Dec;30(12):2725-9 - PubMed
  32. Proc Natl Acad Sci U S A. 1998 Mar 17;95(6):3140-5 - PubMed
  33. BMC Genomics. 2010 Nov 24;11:661 - PubMed
  34. Antimicrob Agents Chemother. 1996 Apr;40(4):829-34 - PubMed
  35. Biochim Biophys Acta. 1960 Apr 22;39:508-18 - PubMed
  36. PLoS One. 2013 Jun 19;8(6):e65670 - PubMed
  37. Microbiology. 2006 Feb;152(Pt 2):295-303 - PubMed
  38. Appl Environ Microbiol. 2011 Oct;77(20):7096-103 - PubMed
  39. J Clin Microbiol. 2001 Mar;39(3):1021-4 - PubMed
  40. J Clin Microbiol. 2002 Mar;40(3):805-10 - PubMed
  41. Proc Natl Acad Sci U S A. 2006 Feb 21;103(8):2857-62 - PubMed
  42. J Bacteriol. 2005 Jun;187(12):3969-79 - PubMed
  43. Eur J Biochem. 1993 Aug 1;215(3):851-7 - PubMed
  44. Proc Natl Acad Sci U S A. 1998 Sep 29;95(20):11751-6 - PubMed
  45. J Bacteriol. 2012 Feb;194(3):627-35 - PubMed
  46. Anal Biochem. 2012 Feb 15;421(2):657-66 - PubMed
  47. J Clin Microbiol. 2000 Mar;38(3):1309-10 - PubMed
  48. BMC Biol. 2009 Jan 26;7:3 - PubMed
  49. FEMS Microbiol Rev. 2009 May;33(3):572-86 - PubMed
  50. BMC Genomics. 2008 Feb 08;9:75 - PubMed
  51. Proc Natl Acad Sci U S A. 1990 Jul;87(14):5415-9 - PubMed
  52. BMC Biol. 2005 Mar 07;3:6 - PubMed
  53. J Biol Chem. 2013 May 31;288(22):15614-27 - PubMed
  54. J Bacteriol. 2007 Jan;189(2):627-32 - PubMed
  55. J Biol Chem. 2000 Nov 24;275(47):37257-63 - PubMed
  56. Eur J Biochem. 1985 Jan 15;146(2):417-27 - PubMed
  57. J Zoo Wildl Med. 2015 Sep;46(3):482-90 - PubMed
  58. J Bacteriol. 2008 Aug;190(15):5480-92 - PubMed
  59. EMBO Rep. 2009 Mar;10(3):246-51 - PubMed
  60. Microbiology. 2012 Apr;158(Pt 4):877-85 - PubMed
  61. J Bacteriol. 2006 Mar;188(5):1959-68 - PubMed
  62. Annu Rev Microbiol. 2014;68:81-100 - PubMed
  63. J Bacteriol. 2005 Jul;187(13):4338-45 - PubMed
  64. Genome Announc. 2013 May 02;1(2):null - PubMed
  65. Int J Syst Evol Microbiol. 2014 Jan;64(Pt 1):60-5 - PubMed
  66. Mol Microbiol. 1996 Aug;21(3):471-8 - PubMed
  67. Mol Microbiol. 1994 May;12 (3):505-15 - PubMed
  68. BMC Genomics. 2013 Jul 24;14:500 - PubMed
  69. Nat Rev Microbiol. 2007 Mar;5(3):219-29 - PubMed
  70. FEMS Microbiol Lett. 2000 Jul 1;188(1):81-5 - PubMed
  71. Mol Oral Microbiol. 2012 Aug;27(4):257-69 - PubMed
  72. Int J Med Microbiol. 2007 Nov;297(7-8):503-12 - PubMed
  73. Nat Rev Microbiol. 2011 Jun;9(6):467-77 - PubMed
  74. J Biol Chem. 2008 Mar 7;283(10):6402-17 - PubMed
  75. Microbiol Immunol. 2013 May;57(5):359-65 - PubMed
  76. Antimicrob Agents Chemother. 2015;59(6):3529-40 - PubMed
  77. J Clin Microbiol. 2012 Sep;50(9):2969-73 - PubMed
  78. Gene. 2002 Feb 6;284(1-2):63-71 - PubMed
  79. J Bacteriol. 2009 Mar;191(5):1480-9 - PubMed
  80. J Bacteriol. 2011 Jun;193(11):2888-9 - PubMed
  81. Mol Microbiol. 2013 Jul;89(2):334-49 - PubMed
  82. Microb Drug Resist. 2012 Jun;18(3):344-58 - PubMed
  83. J Bacteriol. 2003 Jan;185(1):60-70 - PubMed
  84. Mol Microbiol. 2015 Sep;97(5):866-80 - PubMed
  85. Microbiology. 1999 Oct;145 ( Pt 10):2647-53 - PubMed
  86. Science. 2011 Jan 28;331(6016):430-4 - PubMed
  87. Mol Microbiol. 1999 Feb;31(4):1275-81 - PubMed
  88. Int J Syst Evol Microbiol. 2012 Dec;62(Pt 12):2941-5 - PubMed
  89. MBio. 2014 Feb 11;5(1):e01120-13 - PubMed
  90. J Biol Chem. 1998 Jun 19;273(25):15866-71 - PubMed
  91. J Bacteriol. 2004 Aug;186(16):5258-66 - PubMed
  92. Iran J Microbiol. 2011 Jun;3(2):58-67 - PubMed
  93. PLoS One. 2011;6(9):e25124 - PubMed
  94. J Biol Chem. 1987 Nov 15;262(32):15400-5 - PubMed

Publication Types