Display options
Share it on

mSphere. 2016 May 18;1(3). doi: 10.1128/mSphere.00033-16. eCollection 2016.

Role of VicRKX and GlnR in pH-Dependent Regulation of the Streptococcus salivarius 57.I Urease Operon.

mSphere

Szu-Chuan Huang, Yi-Ywan M Chen

Affiliations

  1. Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
  2. Department of Microbiology and Immunology and Research Center for Pathogenic Bacteria, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan.

PMID: 27303745 PMCID: PMC4888889 DOI: 10.1128/mSphere.00033-16

Abstract

Ureolysis by Streptococcus salivarius is critical for pH homeostasis of dental plaque and prevention of dental caries. The expression of S. salivarius urease is induced by acidic pH and carbohydrate excess. The differential expression is mainly controlled at the transcriptional level from the promoter 5' to ureI (p ureI ). Our previous study demonstrates that CodY represses p ureI by binding to a CodY box 5' to p ureI , and the repression is more pronounced in cells grown at pH 7 than in cells grown at pH 5.5. Recent sequence analysis revealed a putative VicR consensus and two GlnR boxes 5' to the CodY box. The results of DNA affinity precipitation assay, electrophoretic mobility shift assay, and chromatin immunoprecipitation-PCR analysis confirmed that both GlnR and VicR interact with the predicted binding sites in p ureI . Isogenic mutant strains (vicRKX null and glnR null) and their derivatives (harboring S. salivarius vicRKX and glnR, respectively) were generated in a recombinant Streptococcus gordonii strain harboring a p ureI-chloramphenicol acetyltransferase gene fusion on gtfG to investigate the regulation of VicR and GlnR. The results indicated that GlnR activates, whereas VicR represses, p ureI expression. The repression by VicR is more pronounced at pH 7, whereas GlnR is more active at pH 5.5. Furthermore, the VicR box acts as an upstream element to enhance p ureI expression in the absence of the cognate regulator. The overall regulation by CodY, VicR, and GlnR in response to pH ensures an optimal expression of urease in S. salivarius when the enzyme is most needed. IMPORTANCE Dental plaque rich in alkali-producing bacteria is less cariogenic, and thus, urease-producing Streptococcus salivarius has been considered as a therapeutic agent for dental caries control. Being one of the few ureolytic microbes in the oral cavity, S. salivarius strain 57.I promotes its competitiveness by mass-producing urease only at acidic growth pH. Here, we demonstrated that the downregulation of the transcription of the ure operon at neutral pH is controlled by a two-component system, VicRKX, whereas the upregulation at acidic pH is mediated by the global transcription regulator of nitrogen metabolism, GlnR. In the absence of VicR-mediated repression, the α subunit of RNA polymerase gains access to interact with the AT-rich sequence within the operator of VicR, leading to further activation of transcription. The overall regulation provides an advantage for S. salivarius to cope with the fluctuation of environmental pH, allowing it to persist in the mouth successfully.

Keywords: GlnR; Streptococcus salivarius 57.I; pH regulation; two-component system VicRKX; urease

References

  1. Appl Environ Microbiol. 2014 Sep;80(17):5386-93 - PubMed
  2. J Bacteriol. 1998 Nov;180(21):5769-75 - PubMed
  3. J Bacteriol. 2006 Apr;188(7):2578-85 - PubMed
  4. Oral Microbiol Immunol. 1989 Dec;4(4):211-8 - PubMed
  5. Mol Oral Microbiol. 2015 Dec;30(6):496-517 - PubMed
  6. J Bacteriol. 2011 Oct;193(19):5596-7 - PubMed
  7. Mol Microbiol. 1999 Apr;32(2):223-32 - PubMed
  8. Microbiology. 2002 Nov;148(Pt 11):3599-608 - PubMed
  9. J Microbiol Methods. 2002 Apr;49(2):193-205 - PubMed
  10. J Bacteriol. 1997 Sep;179(17):5494-501 - PubMed
  11. J Bacteriol. 2009 Oct;191(20):6415-24 - PubMed
  12. Oral Dis. 2006 Jul;12(4):420-3 - PubMed
  13. J Bacteriol. 2008 Apr;190(8):2645-8 - PubMed
  14. Gene. 1983 Sep;23(3):331-41 - PubMed
  15. FEMS Microbiol Lett. 1996 Jan 15;135(2-3):223-9 - PubMed
  16. J Bacteriol. 2009 Dec;191(23):7353-62 - PubMed
  17. J Bacteriol. 2006 Jul;188(13):4978-82 - PubMed
  18. Infect Immun. 2002 Jun;70(6):2846-52 - PubMed
  19. Methods Enzymol. 1975;43:737-55 - PubMed
  20. FEMS Microbiol Rev. 2010 Jul;34(4):588-605 - PubMed
  21. J Bacteriol. 2005 Jun;187(12):4064-76 - PubMed
  22. Appl Environ Microbiol. 2014 Feb;80(3):972-85 - PubMed
  23. J Bacteriol. 2007 Apr;189(8):3166-75 - PubMed
  24. Appl Environ Microbiol. 2010 Apr;76(8):2478-86 - PubMed
  25. Infect Immun. 1996 Feb;64(2):585-92 - PubMed
  26. Front Microbiol. 2015 Jun 12;6:558 - PubMed
  27. Infect Immun. 2014 Dec;82(12):4941-51 - PubMed
  28. J Bacteriol. 1991 Mar;173(6):1920-31 - PubMed
  29. J Bacteriol. 2004 Feb;186(4):1175-81 - PubMed
  30. Arch Oral Biol. 1988;33(10):727-33 - PubMed
  31. J Periodontal Res. 1971;6(4):243-51 - PubMed
  32. Infect Immun. 2008 Mar;76(3):1230-8 - PubMed
  33. J Bacteriol. 2002 Nov;184(21):6060-4 - PubMed
  34. J Bacteriol. 2003 Dec;185(23):6773-9 - PubMed
  35. Microbiol Rev. 1995 Sep;59(3):451-80 - PubMed
  36. J Bacteriol. 2015 Dec;197(23):3645-57 - PubMed
  37. Nature. 2013 Jan 10;493(7431):255-8 - PubMed
  38. Infect Immun. 2005 Oct;73(10 ):6437-45 - PubMed
  39. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  40. Plasmid. 1988 Sep;20(2):137-42 - PubMed
  41. J Mol Biol. 1991 Jul 20;220(2):241-53 - PubMed
  42. Proc Natl Acad Sci U S A. 2008 Jan 22;105(3):1014-9 - PubMed
  43. J Bacteriol. 1976 Oct;128(1):347-55 - PubMed
  44. FEMS Microbiol Lett. 2000 Dec 1;193(1):1-6 - PubMed
  45. J Bacteriol. 1993 Jan;175(2):465-73 - PubMed
  46. Antimicrob Agents Chemother. 1991 Sep;35(9):1804-10 - PubMed
  47. Proc Natl Acad Sci U S A. 2002 Oct 29;99(22):14434-9 - PubMed

Publication Types