Display options
Share it on

Front Mol Neurosci. 2016 Jun 03;9:42. doi: 10.3389/fnmol.2016.00042. eCollection 2016.

Adenosine Kinase Inhibition Protects against Cranial Radiation-Induced Cognitive Dysfunction.

Frontiers in molecular neuroscience

Munjal M Acharya, Janet E Baulch, Theresa A Lusardi, Barrett D Allen, Nicole N Chmielewski, Al Anoud D Baddour, Charles L Limoli, Detlev Boison

Affiliations

  1. Department of Radiation Oncology, University of California Irvine, CA, USA.
  2. R. S. Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA.

PMID: 27375429 PMCID: PMC4891332 DOI: 10.3389/fnmol.2016.00042

Abstract

Clinical radiation therapy for the treatment of CNS cancers leads to unintended and debilitating impairments in cognition. Radiation-induced cognitive dysfunction is long lasting; however, the underlying molecular and cellular mechanisms are still not well established. Since ionizing radiation causes microglial and astroglial activation, we hypothesized that maladaptive changes in astrocyte function might be implicated in radiation-induced cognitive dysfunction. Among other gliotransmitters, astrocytes control the availability of adenosine, an endogenous neuroprotectant and modulator of cognition, via metabolic clearance through adenosine kinase (ADK). Adult rats exposed to cranial irradiation (10 Gy) showed significant declines in performance of hippocampal-dependent cognitive function tasks [novel place recognition, novel object recognition (NOR), and contextual fear conditioning (FC)] 1 month after exposure to ionizing radiation using a clinically relevant regimen. Irradiated rats spent less time exploring a novel place or object. Cranial irradiation also led to reduction in freezing behavior compared to controls in the FC task. Importantly, immunohistochemical analyses of irradiated brains showed significant elevation of ADK immunoreactivity in the hippocampus that was related to astrogliosis and increased expression of glial fibrillary acidic protein (GFAP). Conversely, rats treated with the ADK inhibitor 5-iodotubercidin (5-ITU, 3.1 mg/kg, i.p., for 6 days) prior to cranial irradiation showed significantly improved behavioral performance in all cognitive tasks 1 month post exposure. Treatment with 5-ITU attenuated radiation-induced astrogliosis and elevated ADK immunoreactivity in the hippocampus. These results confirm an astrocyte-mediated mechanism where preservation of extracellular adenosine can exert neuroprotection against radiation-induced pathology. These innovative findings link radiation-induced changes in cognition and CNS functionality to altered purine metabolism and astrogliosis, thereby linking the importance of adenosine homeostasis in the brain to radiation injury.

Keywords: adenosine; adenosine kinase; astrogliosis; cancer therapy; cognition; neuroprotection; radiation

References

  1. Behav Neurosci. 1992 Apr;106(2):274-85 - PubMed
  2. Cell Death Differ. 2010 Jul;17(7):1071-82 - PubMed
  3. CNS Neurol Disord Drug Targets. 2012 Nov 1;11(7):937-49 - PubMed
  4. Brain Struct Funct. 2015 Mar;220(2):1161-71 - PubMed
  5. Radiat Res. 2011 Oct;176(4):459-73 - PubMed
  6. Pharmacol Rev. 2013 Apr 16;65(3):906-43 - PubMed
  7. Brain Res. 1995 Jun 26;684(1):103-6 - PubMed
  8. Neurochem Int. 2013 Dec;63(7):688-95 - PubMed
  9. Cell Transplant. 2015;24(4):691-702 - PubMed
  10. Cancer Res. 2011 Jul 15;71(14):4834-45 - PubMed
  11. Curr Top Med Chem. 2005;5(1):43-58 - PubMed
  12. Curr Opin Pharmacol. 2008 Feb;8(1):2-7 - PubMed
  13. AJNR Am J Neuroradiol. 2011 Nov-Dec;32(10):1795-800 - PubMed
  14. Curr Neuropharmacol. 2009 Sep;7(3):158-9 - PubMed
  15. Stem Cells Transl Med. 2015 Jan;4(1):74-83 - PubMed
  16. Cancer Res. 2013 Feb 1;73(3):1201-10 - PubMed
  17. Free Radic Biol Med. 2010 Dec 15;49(12):1846-55 - PubMed
  18. Proc Natl Acad Sci U S A. 2011 May 17;108(20):8467-72 - PubMed
  19. Radiat Environ Biophys. 2007 Jun;46(2):167-72 - PubMed
  20. Cell Transplant. 2014;23(12):1657-71 - PubMed
  21. Trends Mol Med. 2007 Feb;13(2):54-63 - PubMed
  22. Nat Rev Neurosci. 2010 Feb;11(2):87-99 - PubMed
  23. PLoS One. 2012;7(12):e50048 - PubMed
  24. Learn Mem. 2002 Mar-Apr;9(2):49-57 - PubMed
  25. Antioxid Redox Signal. 2015 Jan 1;22(1):78-91 - PubMed
  26. Exp Neurol. 2004 Aug;188(2):316-30 - PubMed
  27. Pharmacol Biochem Behav. 2006 Sep;85(1):66-75 - PubMed
  28. Cell Transplant. 2014;23(10):1255-66 - PubMed
  29. Cancer Res. 2003 Jul 15;63(14):4021-7 - PubMed
  30. Eur J Neurol. 2010 Jan;17 (1):23-30 - PubMed
  31. Front Mol Neurosci. 2016 Apr 13;9:26 - PubMed
  32. Acta Neuropathol. 2009 Jul;118(1):103-13 - PubMed
  33. Int J Radiat Biol. 2014 Sep;90(9):816-20 - PubMed
  34. Cancer Res. 2015 Feb 15;75(4):676-86 - PubMed
  35. J Neurosci. 2004 Jan 21;24(3):692-701 - PubMed
  36. J Clin Invest. 2013 Aug;123(8):3552-63 - PubMed
  37. Clin Cancer Res. 2013 May 1;19(9):2294-300 - PubMed
  38. Biochem Pharmacol. 2009 Dec 15;78(12):1428-37 - PubMed
  39. Neurochem Int. 1995 Apr;26(4):387-95 - PubMed
  40. Cereb Cortex. 2014 Jan;24(1):67-80 - PubMed
  41. Neuropharmacology. 2015 Oct;97:18-34 - PubMed
  42. J Neurosci. 2007 Mar 14;27(11):2948-57 - PubMed
  43. Proc Natl Acad Sci U S A. 2009 Nov 10;106(45):19150-5 - PubMed
  44. Proc Natl Acad Sci U S A. 2013 Jul 30;110(31):12822-7 - PubMed
  45. Clin Cancer Res. 2012 Apr 1;18(7):1954-65 - PubMed
  46. Arch Neurol. 2009 Apr;66(4):435-40 - PubMed
  47. Neuro Oncol. 2012 Sep;14 Suppl 4:iv37-44 - PubMed
  48. J Neurosci. 2011 Jul 20;31(29):10721-31 - PubMed
  49. J Med Chem. 2000 Jul 27;43(15):2883-93 - PubMed
  50. J Pharmacol Exp Ther. 2000 Dec;295(3):1165-74 - PubMed
  51. Brain. 2005 Oct;128(Pt 10):2383-95 - PubMed
  52. Behav Brain Res. 1992 Apr 10;47(2):113-27 - PubMed
  53. Radiat Res. 2000 Apr;153(4):357-70 - PubMed
  54. J Neurol Sci. 2010 Feb 15;289(1-2):18-22 - PubMed
  55. Curr Med Chem. 2009;16(2):130-43 - PubMed
  56. Nat Med. 2002 Sep;8(9):955-62 - PubMed
  57. Transl Cancer Res. 2014 Apr 1;3(2):124-137 - PubMed
  58. Drug News Perspect. 2007 Dec;20(10):607-11 - PubMed

Publication Types

Grant support