Display options
Share it on

Front Behav Neurosci. 2016 Jun 07;10:108. doi: 10.3389/fnbeh.2016.00108. eCollection 2016.

A Proof of Concept Study of Function-Based Statistical Analysis of fNIRS Data: Syntax Comprehension in Children with Specific Language Impairment Compared to Typically-Developing Controls.

Frontiers in behavioral neuroscience

Guifang Fu, Nicholas J A Wan, Joseph M Baker, James W Montgomery, Julia L Evans, Ronald B Gillam

Affiliations

  1. Department of Mathematics and Statistics, Utah State University Logan, UT, USA.
  2. Department of Psychology, Utah State University Logan, UT, USA.
  3. Center for Interdisciplinary Brain Sciences Research, Division of Brain Sciences, Department of Psychiatry and Behavioral Sciences, School of Medicine, Stanford University Stanford, CA, USA.
  4. Department of Communication Disorders, Ohio University Athens, OH, USA.
  5. School of Behavioral and Brain Sciences, University of Texas at Dallas Richardson, TX, USA.
  6. Department of Communicative Disorders and Deaf Education, Utah State University Logan, UT, USA.

PMID: 27375448 PMCID: PMC4894897 DOI: 10.3389/fnbeh.2016.00108

Abstract

Functional near infrared spectroscopy (fNIRS) is a neuroimaging technology that enables investigators to indirectly monitor brain activity in vivo through relative changes in the concentration of oxygenated and deoxygenated hemoglobin. One of the key features of fNIRS is its superior temporal resolution, with dense measurements over very short periods of time (100 ms increments). Unfortunately, most statistical analysis approaches in the existing literature have not fully utilized the high temporal resolution of fNIRS. For example, many analysis procedures are based on linearity assumptions that only extract partial information, thereby neglecting the overall dynamic trends in fNIRS trajectories. The main goal of this article is to assess the ability of a functional data analysis (FDA) approach for detecting significant differences in hemodynamic responses recorded by fNIRS. Children with and without SLI wore two, 3 × 5 fNIRS caps situated over the bilateral parasylvian areas as they completed a language comprehension task. FDA was used to decompose the high dimensional hemodynamic curves into the mean function and a few eigenfunctions to represent the overall trend and variation structures over time. Compared to the most popular GLM, we did not assume any parametric structure and let the data speak for itself. This analysis identified significant differences between the case and control groups in the oxygenated hemodynamic mean trends in the bilateral inferior frontal and left inferior posterior parietal brain regions. We also detected significant group differences in the deoxygenated hemodynamic mean trends in the right inferior posterior parietal cortex and left temporal parietal junction. These findings, using dramatically different approaches, experimental designs, data sets, and foci, were consistent with several other reports, confirming group differences in the importance of these two areas for syntax comprehension. The proposed FDA was consistent with the temporal characteristics of fNIRS, thus providing an alternative methodology for fNIRS analyses.

Keywords: fNIRS; functional data analysis; hemodynamic response curve; sentence comprehension; specific language impairment

References

  1. Magn Reson Imaging. 2006 May;24(4):495-505 - PubMed
  2. Neuroimage. 2009 May 15;46(1):133-43 - PubMed
  3. Clin Neuropsychol. 2007 Jan;21(1):9-37 - PubMed
  4. Int J Lang Commun Disord. 2014 Jul-Aug;49(4):381-415 - PubMed
  5. Neuroimage. 2007 Apr 1;35(2):625-34 - PubMed
  6. Neuroimage. 2004 Apr;21(4):1464-71 - PubMed
  7. Psychol Sci. 2003 Sep;14(5):433-40 - PubMed
  8. Neuroimage. 2004 Jan;21(1):283-90 - PubMed
  9. Appl Opt. 2000 Sep 1;39(25):4721-9 - PubMed
  10. Neuroimage. 2006 Aug 15;32(2):930-9 - PubMed
  11. Schizophr Res. 2005 Dec 15;80(2-3):271-82 - PubMed
  12. Brain Res Bull. 2003 Jun 30;61(1):51-6 - PubMed
  13. Clin Neuropsychol. 2007 Jan;21(1):38-57 - PubMed
  14. Med Biol Eng Comput. 2006 Nov;44(11):945-58 - PubMed
  15. Br J Obstet Gynaecol. 1994 Jun;101(6):509-13 - PubMed
  16. Nature. 1996 Sep 19;383(6597):254-6 - PubMed
  17. J Appl Physiol (1985). 2001 May;90(5):1657-62 - PubMed
  18. J Speech Lang Hear Res. 1997 Dec;40(6):1245-60 - PubMed
  19. Eur Arch Psychiatry Clin Neurosci. 1998;248(5):245-9 - PubMed
  20. Br J Anaesth. 1999 Jun;82(6):831-7 - PubMed
  21. Psychiatry Res. 2003 Sep 30;124(1):1-10 - PubMed
  22. Ann N Y Acad Sci. 2010 Mar;1191:62-88 - PubMed
  23. Neurosci Lett. 2001 Feb 23;299(3):221-4 - PubMed
  24. Neuroimage. 2010 Feb 15;49(4):3039-46 - PubMed
  25. Cereb Cortex. 2004 Jul;14(7):703-12 - PubMed
  26. J Biomed Opt. 2013 Nov;18(11):117007 - PubMed
  27. Pediatr Res. 2000 Jul;48(1):18-23 - PubMed
  28. Neuroimage. 2010 Jan 1;49(1):561-7 - PubMed
  29. Dev Sci. 2010 Nov;13(6):876-85 - PubMed
  30. Brain Lang. 2012 May;121(2):144-51 - PubMed
  31. Neuroimage. 2005 Apr 15;25(3):701-7 - PubMed
  32. Phys Med Biol. 2003 May 21;48(10):1391-403 - PubMed
  33. Psychiatry Clin Neurosci. 2007 Dec;61(6):616-21 - PubMed
  34. Magn Reson Med. 1999 Nov;42(5):944-51 - PubMed
  35. Neuroimage. 2006 May 1;30(4):1414-32 - PubMed
  36. Neuroscientist. 2013 Feb;19(1):43-61 - PubMed
  37. Brain. 1992 Dec;115 ( Pt 6):1753-68 - PubMed
  38. Hum Brain Mapp. 2002 Sep;17(1):61-71 - PubMed
  39. Neurocrit Care. 2010 Apr;12(2):173-80 - PubMed
  40. Neuroimage. 2006 Jan 1;29(1):172-84 - PubMed
  41. Br J Anaesth. 1994 Oct;73(4):503-6 - PubMed
  42. J Clin Psychol. 1982 Jan;38(1):4-33 - PubMed
  43. Neuroimage. 2014 Jan 15;85 Pt 1:1-5 - PubMed
  44. Neuroimage. 2004 Apr;21(4):1275-88 - PubMed
  45. Biol Psychiatry. 2004 Mar 1;55(5):501-11 - PubMed
  46. Appl Opt. 2009 Apr 1;48(10):D280-98 - PubMed
  47. Schizophr Bull. 2000;26(4):913-9 - PubMed
  48. Br J Anaesth. 2000 Jan;84(1):38-42 - PubMed
  49. J Biomed Opt. 2007 Nov-Dec;12(6):064010 - PubMed
  50. Psychophysiology. 2003 Jul;40(4):511-20 - PubMed
  51. Neuroimage. 2004 Apr;21(4):1320-36 - PubMed
  52. Physiol Meas. 2004 Apr;25(2):437-45 - PubMed
  53. Neuropsychologia. 2003;41(9):1199-207 - PubMed
  54. J Neurosci. 2010 Dec 15;30(50):16809-17 - PubMed
  55. Neuroimage. 2009 Oct 1;47(4):1177-84 - PubMed
  56. Cerebrovasc Brain Metab Rev. 1995 Fall;7(3):240-76 - PubMed
  57. Behav Brain Sci. 2000 Feb;23(1):1-21; discussion 21-71 - PubMed
  58. Cereb Cortex. 2009 Dec;19(12):2767-96 - PubMed
  59. Dev Sci. 2004 Jun;7(3):360-77 - PubMed
  60. J Speech Lang Hear Res. 2005 Apr;48(2):405-25 - PubMed
  61. Brain. 1965 Sep;88(3):585-644 - PubMed
  62. Hum Brain Mapp. 2002 Jul;16(3):183-9 - PubMed
  63. Neuroimage. 2009 Jan 15;44(2):428-47 - PubMed
  64. Brain Lang. 1991 Jul;41(1):52-66 - PubMed
  65. Brain Lang. 2012 May;121(2):152-63 - PubMed
  66. Front Neuroinform. 2009 May 29;3:12 - PubMed
  67. Neuroimage. 2014 Jan 15;85 Pt 1:72-91 - PubMed

Publication Types