Display options
Share it on

Front Pharmacol. 2016 Jun 07;7:142. doi: 10.3389/fphar.2016.00142. eCollection 2016.

Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension.

Frontiers in pharmacology

Shota Sasagawa, Yuhei Nishimura, Hirofumi Sawada, Erquan Zhang, Shiko Okabe, Soichiro Murakami, Yoshifumi Ashikawa, Mizuki Yuge, Koki Kawaguchi, Reiko Kawase, Yoshihide Mitani, Kazuo Maruyama, Toshio Tanaka

Affiliations

  1. Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, Tsu Japan.
  2. Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics, Mie University Graduate School of Medicine, TsuJapan; Mie University Medical Zebrafish Research Center, TsuJapan; Department of Systems Pharmacology, Mie University Graduate School of Medicine, TsuJapan; Department of Omics Medicine, Mie University Industrial Technology Innovation Institute, TsuJapan; Department of Bioinformatics, Mie University Life Science Research Center, TsuJapan.
  3. Department of Anesthesiology and Critical Care Medicine, Mie University Graduate School of Medicine, Tsu Japan.
  4. Department of Pediatrics, Mie University Graduate School of Medicine, Tsu Japan.

PMID: 27375481 PMCID: PMC4894905 DOI: 10.3389/fphar.2016.00142

Abstract

Pulmonary arterial hypertension (PAH) is a heterogeneous disorder associated with a progressive increase in pulmonary artery resistance and pressure. Although various therapies have been developed, the 5-year survival rate of PAH patients remains low. There is thus an important need to identify novel genes that are commonly dysregulated in PAH of various etiologies and could be used as biomarkers and/or therapeutic targets. In this study, we performed comparative transcriptome analysis of five mammalian PAH datasets downloaded from a public database. We identified 228 differentially expressed genes (DEGs) from a rat PAH model caused by inhibition of vascular endothelial growth factor receptor under hypoxic conditions, 379 DEGs from a mouse PAH model associated with systemic sclerosis, 850 DEGs from a mouse PAH model associated with schistosomiasis, 1598 DEGs from one cohort of human PAH patients, and 4260 DEGs from a second cohort of human PAH patients. Gene-by-gene comparison identified four genes that were differentially upregulated or downregulated in parallel in all five sets of DEGs. Expression of coiled-coil domain containing 80 (CCDC80) and anterior gradient two genes was significantly increased in the five datasets, whereas expression of SMAD family member six and granzyme A was significantly decreased. Weighted gene co-expression network analysis revealed a connection between CCDC80 and collagen type I alpha 1 (COL1A1) expression. To validate the function of CCDC80 in vivo, we knocked out ccdc80 in zebrafish using the clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system. In vivo imaging of zebrafish expressing a fluorescent protein in endothelial cells showed that ccdc80 deletion significantly increased the diameter of the ventral artery, a vessel supplying blood to the gills. We also demonstrated that expression of col1a1 and endothelin-1 mRNA was significantly decreased in the ccdc80-knockout zebrafish. Finally, we examined Ccdc80 immunoreactivity in a rat PAHmodel and found increased expression in the hypertrophied media and adventitia of the pre-acinar pulmonary arteries (PAs) and in the thickened intima, media, and adventitia of the obstructed intra-acinar PAs. These results suggest that increased expression of CCDC80 may be involved in the pathogenesis of PAH, potentially by modulating the expression of endothelin-1 and COL1A1.

Keywords: CCDC80; COL1A1; EDN1; comparative transcriptome analysis; pulmonary arterial hypertension; systems pharmacology; weighted gene co-expression network analysis

References

  1. Methods Cell Biol. 2011;104:453-78 - PubMed
  2. Respiration. 2008;75(3):272-80 - PubMed
  3. Prostate. 2013 Feb 15;73(3):306-15 - PubMed
  4. Congenit Anom (Kyoto). 2016 Jan;56(1):18-27 - PubMed
  5. Cancer Cell. 2005 Nov;8(5):369-80 - PubMed
  6. Biol Reprod. 2015 Feb;92(2):50 - PubMed
  7. Eur J Hum Genet. 2010 Nov;18(11):1209-15 - PubMed
  8. J Heart Lung Transplant. 2015 Mar;34(3):282-305 - PubMed
  9. Front Pharmacol. 2015 Sep 15;6:199 - PubMed
  10. Nucleic Acids Res. 2009 Jan;37(Database issue):D885-90 - PubMed
  11. Hum Mol Genet. 2007 Jul 15;16(14):1682-98 - PubMed
  12. Development. 1996 Dec;123:369-89 - PubMed
  13. Methods. 2014 Sep;69(2):142-50 - PubMed
  14. Burns. 2010 Sep;36(6):811-8 - PubMed
  15. Front Pharmacol. 2016 May 09;7:119 - PubMed
  16. Physiol Rep. 2013 Jun;1(1):e00008 - PubMed
  17. Am J Respir Crit Care Med. 2014 Feb 15;189(4):394-400 - PubMed
  18. Cell Death Differ. 2010 Apr;17(4):596-606 - PubMed
  19. J Mol Cell Cardiol. 2015 Apr;81:12-4 - PubMed
  20. Am J Respir Cell Mol Biol. 2016 May;54(5):647-55 - PubMed
  21. Eur Respir J. 2011 Jun;37(6):1400-10 - PubMed
  22. J Biol Chem. 2013 Aug 23;288(34):24972-83 - PubMed
  23. Chest. 2015 Feb;147(2):529-37 - PubMed
  24. J Gerontol A Biol Sci Med Sci. 2015 Jul;70(7):809-16 - PubMed
  25. Physiol Genomics. 2008 Apr 22;33(2):278-91 - PubMed
  26. Pulm Circ. 2015 Jun;5(2):364-9 - PubMed
  27. Basic Res Cardiol. 2012 Nov;107(6):307 - PubMed
  28. PLoS One. 2015 May 26;10(5):e0128319 - PubMed
  29. Genome Biol. 2004;5(10):R80 - PubMed
  30. Bioinformatics. 2004 Feb 12;20(3):307-15 - PubMed
  31. Int J Biol Sci. 2012;8(2):195-213 - PubMed
  32. FEBS Lett. 2004 Aug 27;573(1-3):83-92 - PubMed
  33. Proc Natl Acad Sci U S A. 2008 Sep 2;105(35):12849-54 - PubMed
  34. BMC Bioinformatics. 2008 Dec 29;9:559 - PubMed
  35. Nucleic Acids Res. 2015 Apr 20;43(7):e47 - PubMed
  36. PLoS One. 2015 Feb 25;10 (2):e0118655 - PubMed
  37. Dev Biol. 2002 Aug 15;248(2):307-18 - PubMed
  38. Hum Mutat. 2015 Dec;36(12 ):1113-27 - PubMed
  39. Nat Neurosci. 2008 Nov;11(11):1271-82 - PubMed
  40. PLoS One. 2012;7(2):e31851 - PubMed
  41. J Pathol. 2014 May;233(1):7-17 - PubMed
  42. Am J Physiol Heart Circ Physiol. 2010 Dec;299(6):H1823-31 - PubMed
  43. Am J Pathol. 2014 Feb;184(2):483-93 - PubMed
  44. Am J Physiol Lung Cell Mol Physiol. 2015 Mar 15;308(6):L523-38 - PubMed
  45. J Cell Physiol. 2015 Apr;230(4):821-30 - PubMed
  46. Front Genet. 2013 Dec 31;4:305 - PubMed
  47. Genome Biol. 2015 Apr 29;16:87 - PubMed
  48. Hum Mol Genet. 2012 Jun 1;21(11):2548-58 - PubMed
  49. J Exp Biol. 2008 Aug;211(Pt 15):2371-8 - PubMed
  50. J Am Coll Cardiol. 2013 Dec 24;62(25 Suppl):D34-41 - PubMed
  51. Nat Rev Rheumatol. 2009 Apr;5(4):200-6 - PubMed
  52. Chest. 2012 Mar;141(3):661-73 - PubMed
  53. J Intensive Care. 2014 Oct 01;2(1):57 - PubMed
  54. Bioinformatics. 2010 Oct 1;26(19):2363-7 - PubMed
  55. Vascul Pharmacol. 2015 Oct;73:4-7 - PubMed
  56. Metabolomics. 2014;10(6):1169-1175 - PubMed
  57. J Am Coll Cardiol. 2015 May 12;65(18):1976-97 - PubMed
  58. Nat Commun. 2013;4:2562 - PubMed
  59. Am J Respir Crit Care Med. 2012 Nov 1;186(9):897-908 - PubMed
  60. Nucleic Acids Res. 2015 Jan;43(Database issue):D204-12 - PubMed
  61. Congenit Anom (Kyoto). 2015 Feb;55(1):1-16 - PubMed
  62. Am J Respir Cell Mol Biol. 2013 Dec;49(6):951-9 - PubMed
  63. PLoS One. 2014 Feb 12;9(2):e88727 - PubMed
  64. BMC Physiol. 2010 Oct 21;10:21 - PubMed
  65. Cancer Lett. 2011 May 1;304(1):1-7 - PubMed

Publication Types