Display options
Share it on

Front Microbiol. 2016 Jun 08;7:828. doi: 10.3389/fmicb.2016.00828. eCollection 2016.

Indole-3-Acetic Acid Is Produced by Emiliania huxleyi Coccolith-Bearing Cells and Triggers a Physiological Response in Bald Cells.

Frontiers in microbiology

Leen Labeeuw, Joleen Khey, Anna R Bramucci, Harjot Atwal, A Paulina de la Mata, James Harynuk, Rebecca J Case

Affiliations

  1. Department of Biological Sciences, University of Alberta Edmonton, AB, Canada.
  2. Department of Chemistry, University of Alberta Edmonton, AB, Canada.

PMID: 27375567 PMCID: PMC4896954 DOI: 10.3389/fmicb.2016.00828

Abstract

Indole-3-acetic acid (IAA) is an auxin produced by terrestrial plants which influences development through a variety of cellular mechanisms, such as altering cell orientation, organ development, fertility, and cell elongation. IAA is also produced by bacterial pathogens and symbionts of plants and algae, allowing them to manipulate growth and development of their host. They do so by either producing excess exogenous IAA or hijacking the IAA biosynthesis pathway of their host. The endogenous production of IAA by algae remains contentious. Using Emiliania huxleyi, a globally abundant marine haptophyte, we investigated the presence and potential role of IAA in algae. Homologs of genes involved in several tryptophan-dependent IAA biosynthesis pathways were identified in E. huxleyi. This suggests that this haptophyte can synthesize IAA using various precursors derived from tryptophan. Addition of L-tryptophan to E. huxleyi stimulated IAA production, which could be detected using Salkowski's reagent and GC × GC-TOFMS in the C cell type (coccolith bearing), but not in the N cell type (bald). Various concentrations of IAA were exogenously added to these two cell types to identify a physiological response in E. huxleyi. The N cell type, which did not produce IAA, was more sensitive to it, showing an increased variation in cell size, membrane permeability, and a corresponding increase in the photosynthetic potential quantum yield of Photosystem II (PSII). A roseobacter (bacteria commonly associated with E. huxleyi) Ruegeria sp. R11, previously shown to produce IAA, was co-cultured with E. huxleyi C and N cells. IAA could not be detected from these co-cultures, and even when stimulated by addition of L-tryptophan, they produced less IAA than axenic C type culture similarly induced. This suggests that IAA plays a novel role signaling between different E. huxleyi cell types, rather than between a bacteria and its algal host.

Keywords: Emiliania huxleyi; algae; auxin; cell type; coccolith; haptophyte; indole-3-acetic acid (IAA); phytohormone

References

  1. J Bacteriol. 2000 Jul;182(14):3885-95 - PubMed
  2. Appl Environ Microbiol. 2000 Jul;66(7):3024-30 - PubMed
  3. Appl Environ Microbiol. 2001 Sep;67(9):3824-31 - PubMed
  4. CRC Crit Rev Plant Sci. 1985;2(4):317-65 - PubMed
  5. Microbiology. 2002 Apr;148(Pt 4):1119-27 - PubMed
  6. Planta. 2002 Jun;215(2):229-38 - PubMed
  7. Plant Mol Biol. 2002 Jun-Jul;49(3-4):319-38 - PubMed
  8. Appl Environ Microbiol. 2002 Aug;68(8):3795-801 - PubMed
  9. Plant Physiol. 2002 Sep;130(1):292-302 - PubMed
  10. Science. 2002 Nov 8;298(5596):1207 - PubMed
  11. J Chromatogr A. 2003 Apr 18;993(1-2):89-102 - PubMed
  12. Trends Plant Sci. 2003 Aug;8(8):380-6 - PubMed
  13. Genome Res. 2003 Sep;13(9):2178-89 - PubMed
  14. Science. 2005 Mar 11;307(5715):1598 - PubMed
  15. Appl Environ Microbiol. 1995 Feb;61(2):793-6 - PubMed
  16. Proc Natl Acad Sci U S A. 1985 Oct;82(19):6522-6 - PubMed
  17. Plant Physiol. 1940 Apr;15(2):291-9 - PubMed
  18. Plant Physiol. 1965 Mar;40(2):360-8 - PubMed
  19. Plant Physiol. 1985 Aug;78(4):844-8 - PubMed
  20. Plant Physiol. 1991 Apr;95(4):1203-8 - PubMed
  21. Nat Rev Mol Cell Biol. 2006 Nov;7(11):847-59 - PubMed
  22. FEMS Microbiol Rev. 2007 Jul;31(4):425-48 - PubMed
  23. Nat Rev Mol Cell Biol. 2007 Aug;8(8):655-65 - PubMed
  24. Cell Biol Int. 2008 May;32(5):542-5 - PubMed
  25. Nat Rev Microbiol. 2008 Feb;6(2):111-20 - PubMed
  26. J Chromatogr A. 2008 Apr 4;1186(1-2):67-108 - PubMed
  27. Nature. 2008 Jul 31;454(7204):595-9 - PubMed
  28. Annu Rev Phytopathol. 1993;31:253-73 - PubMed
  29. Curr Biol. 2009 Jan 27;19(2):R81-8 - PubMed
  30. Trends Plant Sci. 2009 Apr;14(4):182-8 - PubMed
  31. Bioinformatics. 2009 Jul 15;25(14):1739-45 - PubMed
  32. Science. 2009 Nov 6;326(5954):861-5 - PubMed
  33. Genome Biol. 2009;10(12):249 - PubMed
  34. Cold Spring Harb Perspect Biol. 2010 Jan;2(1):a001594 - PubMed
  35. Annu Rev Plant Biol. 2010;61:49-64 - PubMed
  36. Plant Physiol. 2010 May;153(1):128-44 - PubMed
  37. Curr Microbiol. 2010 Nov;61(5):361-9 - PubMed
  38. Proc Natl Acad Sci U S A. 2010 May 11;107(19):8569-74 - PubMed
  39. Chemosphere. 2010 Aug;80(8):901-7 - PubMed
  40. J Microbiol Biotechnol. 2010 Sep;20(9):1259-65 - PubMed
  41. Environ Microbiol. 2011 Feb;13(2):529-37 - PubMed
  42. Plant Physiol. 2011 Jan;155(1):209-21 - PubMed
  43. FEMS Microbiol Ecol. 2011 May;76(2):381-92 - PubMed
  44. Proc Natl Acad Sci U S A. 2011 Nov 8;108(45):18512-7 - PubMed
  45. PLoS One. 2011;6(12):e27387 - PubMed
  46. J Exp Bot. 2012 May;63(8):2853-72 - PubMed
  47. Environ Microbiol. 2012 Jun;14(6):1558-69 - PubMed
  48. Pak J Biol Sci. 2012 Jan 1;15(1):39-43 - PubMed
  49. Dev Biol. 2012 Sep 1;369(1):19-31 - PubMed
  50. Plant Cell. 2013 Feb;25(2):609-24 - PubMed
  51. Nat Commun. 2013;4:1941 - PubMed
  52. Photosynth Res. 1990 Sep;25(3):147-50 - PubMed
  53. Planta. 1977 Jan;137(3):293-8 - PubMed
  54. Photosynth Res. 1986 Jan;10(1-2):51-62 - PubMed
  55. Planta. 1971 Jun;97(2):173-8 - PubMed
  56. Trends Plant Sci. 2014 Jan;19(1):44-51 - PubMed
  57. Plant Physiol Biochem. 2014 Jun;79:66-76 - PubMed
  58. Appl Biochem Biotechnol. 2014 Aug;173(8):1977-84 - PubMed
  59. Front Genet. 2014 Jul 25;5:241 - PubMed
  60. Trends Plant Sci. 2014 Dec;19(12):764-70 - PubMed
  61. Bioresour Technol. 2014 Nov;172:97-103 - PubMed
  62. Trends Plant Sci. 2014 Dec;19(12):741-3 - PubMed
  63. J Vis Exp. 2015 Mar 11;(97):null - PubMed
  64. Nature. 2015 Jun 4;522(7554):98-101 - PubMed
  65. Trends Plant Sci. 2015 Aug;20(8):463-5 - PubMed
  66. Plant Physiol. 2015 Oct;169(2):1001-5 - PubMed
  67. Curr Opin Plant Biol. 2015 Aug;26:147-53 - PubMed
  68. Sci Rep. 2015 Dec 11;5:17099 - PubMed
  69. Plant Physiol. 2016 Mar;170(3):1206-15 - PubMed
  70. Front Plant Sci. 2016 Feb 16;7:158 - PubMed
  71. J Plant Physiol. 2016 Apr 1;193:37-44 - PubMed
  72. J Phycol. 2013 Jun;49(3):459-67 - PubMed
  73. J Phycol. 2009 Feb;45(1):108-18 - PubMed
  74. Plants (Basel). 2015 Aug 24;4(3):606-43 - PubMed
  75. Plants (Basel). 2014 Jan 27;3(1):58-69 - PubMed
  76. Front Microbiol. 2016 Jun 13;7:892 - PubMed
  77. Proc Natl Acad Sci U S A. 1993 Jan 1;90(1):247-51 - PubMed

Publication Types