Display options
Share it on

Ann Bot. 2016 Oct 01;118(5):971-982. doi: 10.1093/aob/mcw139.

Reproductive isolation between populations of Iris atropurpurea is associated with ecological differentiation.

Annals of botany

Gil Yardeni, Naama Tessler, Eric Imbert, Yuval Sapir

Affiliations

  1. The Botanical Garden, Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Ramat Aviv, Tel Aviv 69978, Israel.
  2. Department of Biology, University of Haifa, Oranim, Tivon, Israel.
  3. Institut des Sciences de l'Evolution CNRS, IRD, University Montpellier 2, Montpellier, France.

PMID: 27436798 PMCID: PMC5055820 DOI: 10.1093/aob/mcw139

Abstract

Background and Aims Speciation is often described as a continuous dynamic process, expressed by different magnitudes of reproductive isolation (RI) among groups in different levels of divergence. Studying intraspecific partial RI can shed light on mechanisms underlying processes of population divergence. Intraspecific divergence can be driven by spatially stochastic accumulation of genetic differences following reduced gene flow, resulting in increased RI with increased geographical distance, or by local adaptation, resulting in increased RI with environmental difference. Methods We tested for RI as a function of both geographical distance and ecological differentiation in Iris atropurpurea, an endemic Israeli coastal plant. We crossed plants in the Netanya Iris Reserve population with plants from 14 populations across the species' full distribution, and calculated RI and reproductive success based on fruit set, seed set and fraction of seed viability. Key Results We found that total RI was not significantly associated with geographical distance, but significantly increased with ecological distance. Similarly, reproductive success of the crosses, estimated while controlling for the dependency of each component on the previous stage, significantly reduced with increased ecological distance. Conclusions Our results indicate that the rise of post-pollination reproductive barriers in I. atropurpurea is more affected by ecological differentiation between populations than by geographical distance, supporting the hypothesis that ecological differentiation is predominant over isolation by distance and by reduced gene flow in this species. These findings also affect conservation management, such as genetic rescue, in the highly fragmented and endangered I. atropurpurea.

© The Author 2016. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: [email protected].

Keywords: Iris atropurpurea Baker; Iris section Oncocyclus; Adaptive divergence; aster modelling; isolation by distance; isolation by ecology; local adaptation; post-zygotic reproductive barriers

References

  1. Genetics. 1943 Mar;28(2):114-38 - PubMed
  2. Ann Bot. 2010 Sep;106(3):439-55 - PubMed
  3. Mol Ecol. 2013 Dec;22(24):5983-99 - PubMed
  4. Genetics. 2006 Jan;172(1):499-506 - PubMed
  5. Plant Physiol. 2010 Sep;154(1):163-72 - PubMed
  6. Evolution. 2014 Jan;68(1):1-15 - PubMed
  7. Evolution. 2003 Jul;57(7):1520-34 - PubMed
  8. Ann Bot. 2013 Mar;111(3):395-407 - PubMed
  9. Evolution. 1993 Feb;47(1):264-279 - PubMed
  10. Plant Biol (Stuttg). 2005 Jul;7(4):417-24 - PubMed
  11. Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3071-81 - PubMed
  12. New Phytol. 2014 Jul;203(1):323-34 - PubMed
  13. Philos Trans R Soc Lond B Biol Sci. 2008 Sep 27;363(1506):3009-21 - PubMed
  14. Trends Ecol Evol. 2001 Feb 1;16(2):62-63 - PubMed
  15. Mol Ecol. 2009 Feb;18(3):375-402 - PubMed
  16. Conserv Biol. 2007 Jun;21(3):832-41 - PubMed
  17. Evolution. 1989 Aug;43(5):1097-1109 - PubMed
  18. Evolution. 1997 Aug;51(4):1112-1119 - PubMed
  19. Am Nat. 2008 Jul;172(1):E35-47 - PubMed
  20. Mol Ecol. 2014 Dec;23(23):5649-62 - PubMed
  21. Plant Cell. 2007 Mar;19(3):779-90 - PubMed
  22. Mol Ecol. 2015 Jun;24(11):2610-8 - PubMed
  23. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):11910-5 - PubMed
  24. Evolution. 2001 Jan;55(1):198-201 - PubMed
  25. Evolution. 2014 May;68(5):1511-22 - PubMed
  26. Front Plant Sci. 2015 Jul 22;6:561 - PubMed
  27. Am Nat. 2000 Mar;155(3):383-394 - PubMed
  28. Ann Bot. 2008 Dec;102(6):1031-41 - PubMed
  29. New Phytol. 2015 Jan;205(1):369-77 - PubMed
  30. Am J Bot. 2013 Sep;100(9):1883-95 - PubMed
  31. Ecol Lett. 2013 Jul;16(7):940-50 - PubMed
  32. Evolution. 2007 Nov;61(11):2671-83 - PubMed
  33. Ecol Evol. 2015 Nov 26;5(24):5838-46 - PubMed
  34. Evolution. 2013 Sep;67(9):2461-7 - PubMed
  35. New Phytol. 2015 Jan;205(1):402-14 - PubMed
  36. Evolution. 2008 Aug;62(8):1840-51 - PubMed
  37. Evolution. 2006 Jul;60(7):1372-81 - PubMed
  38. Mol Ecol. 2007 Feb;16(3):463-75 - PubMed
  39. Evolution. 2013 Nov;67(11):3258-73 - PubMed
  40. New Phytol. 2015 Sep;207(4):968-84 - PubMed
  41. Evolution. 2001 Oct;55(10):1932-42 - PubMed
  42. Nature. 2006 May 11;441(7090):210-3 - PubMed

Publication Types