Display options
Share it on

Front Plant Sci. 2016 Jun 08;7:836. doi: 10.3389/fpls.2016.00836. eCollection 2016.

Biochemical, Transcriptional, and Bioinformatic Analysis of Lipid Droplets from Seeds of Date Palm (Phoenix dactylifera L.) and Their Use as Potent Sequestration Agents against the Toxic Pollutant, 2,3,7,8-Tetrachlorinated Dibenzo-p-Dioxin.

Frontiers in plant science

Abdulsamie Hanano, Ibrahem Almousally, Mouhnad Shaban, Farzana Rahman, Elizabeth Blee, Denis J Murphy

Affiliations

  1. Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria Damascus, Syria.
  2. Genomics and Computational Biology Group, University of South Wales Pontypridd, UK.
  3. Institut de Biologie Moléculaire des Plantes Strasbourg, France.

PMID: 27375673 PMCID: PMC4896926 DOI: 10.3389/fpls.2016.00836

Abstract

Contamination of aquatic environments with dioxins, the most toxic group of persistent organic pollutants (POPs), is a major ecological issue. Dioxins are highly lipophilic and bioaccumulate in fatty tissues of marine organisms used for seafood where they constitute a potential risk for human health. Lipid droplets (LDs) purified from date palm, Phoenix dactylifera, seeds were characterized and their capacity to extract dioxins from aquatic systems was assessed. The bioaffinity of date palm LDs toward 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), the most toxic congener of dioxins was determined. Fractioned LDs were spheroidal with mean diameters of 2.5 µm, enclosing an oil-rich core of 392.5 mg mL(-1). Isolated LDs did not aggregate and/or coalesce unless placed in acidic media and were strongly associated with three major groups of polypeptides of relative mass 32-37, 20-24, and 16-18 kDa. These masses correspond to the LD-associated proteins, oleosins, caleosins, and steroleosins, respectively. Efficient partitioning of TCDD into LDs occurred with a coefficient of log K LB/w,TCDD = 7.528 ± 0.024; it was optimal at neutral pH and was dependent on the presence of the oil-rich core, but was independent of the presence of LD-associated proteins. Bioinformatic analysis of the date palm genome revealed nine oleosin-like, five caleosin-like, and five steroleosin-like sequences, with predicted structures having putative lipid-binding domains that match their LD stabilizing roles and use as bio-based encapsulation systems. Transcriptomic analysis of date palm seedlings exposed to TCDD showed strong up-regulation of several caleosin and steroleosin genes, consistent with increased LD formation. The results suggest that the plant LDs could be used in ecological remediation strategies to remove POPs from aquatic environments. Recent reports suggest that several fungal and algal species also use LDs to sequester both external and internally derived hydrophobic toxins, which indicates that our approach could be used as a broader biomimetic strategy for toxin removal.

Keywords: Phoenix dactylifera; TCDD; date palm; dioxins; lipid droplets; oleosins-like; sequestration

References

  1. J Biol Chem. 1988 Jan 25;263(3):1476-81 - PubMed
  2. Proteomics. 2006 Aug;6(16):4586-98 - PubMed
  3. Plant J. 1997 Apr;11(4):783-96 - PubMed
  4. Plant Cell. 2006 Aug;18(8):1961-74 - PubMed
  5. Mol Syst Biol. 2011 Oct 11;7:539 - PubMed
  6. Anal Biochem. 1979 Sep 1;97(2):403-9 - PubMed
  7. Plant J. 2006 Mar;45(5):847-56 - PubMed
  8. Mol Biol Evol. 1987 Jul;4(4):406-25 - PubMed
  9. Chemosphere. 2008 Feb;70(8):1452-8 - PubMed
  10. Nat Protoc. 2015 Jun;10(6):845-58 - PubMed
  11. Chemosphere. 2009 Jan;74(3):384-8 - PubMed
  12. Plant Signal Behav. 2015;10(4):e991574 - PubMed
  13. Physiol Plant. 2001 Jul;112(3):301-307 - PubMed
  14. J Mol Biol. 1982 May 5;157(1):105-32 - PubMed
  15. Nat Commun. 2013;4:2274 - PubMed
  16. Plant Cell Physiol. 2010 Dec;51(12):1975-87 - PubMed
  17. Biotechnol Bioeng. 2004 Sep 20;87(6):734-42 - PubMed
  18. Plant Physiol Biochem. 2009 Sep;47(9):796-806 - PubMed
  19. Curr Biol. 2014 Jul 7;24(13):1485-91 - PubMed
  20. Cell Cycle. 2011 Sep 15;10(18):3159-67 - PubMed
  21. Physiol Behav. 2008 May 23;94(2):231-41 - PubMed
  22. Analyst. 2003 May;128(5):486-92 - PubMed
  23. Prog Lipid Res. 1993;32(3):247-80 - PubMed
  24. Plant Physiol. 2014 Jan;164(1):105-18 - PubMed
  25. Appl Biochem Biotechnol. 2011 Mar;163(6):792-802 - PubMed
  26. J Biol Chem. 1992 Aug 5;267(22):15626-34 - PubMed
  27. J Biochem. 1997 Apr;121(4):762-8 - PubMed
  28. J Colloid Interface Sci. 1999 Nov 1;219(1):168-177 - PubMed
  29. Biochem Biophys Res Commun. 1990 Nov 15;172(3):1180-8 - PubMed
  30. BMC Mol Biol. 2009 Sep 28;10:93 - PubMed
  31. Chemosphere. 2014 Jun;104:76-84 - PubMed
  32. Plant Physiol Biochem. 2004 Jun;42(6):501-9 - PubMed
  33. Trends Plant Sci. 2001 Jun;6(6):268-73 - PubMed
  34. Plant Physiol. 1990 Nov;94(3):1282-9 - PubMed
  35. Plant Physiol. 2002 Apr;128(4):1200-11 - PubMed
  36. J Biol Chem. 2006 Nov 3;281(44):33140-51 - PubMed
  37. Trends Mol Med. 2015 Jan;21(1):34-42 - PubMed
  38. J Lipid Res. 2012 Feb;53(2):215-26 - PubMed
  39. Arch Environ Contam Toxicol. 2007 May;52(4):563-71 - PubMed
  40. Protoplasma. 2012 Jul;249(3):541-85 - PubMed
  41. Plant Physiol. 2014 Sep;166(1):109-24 - PubMed
  42. Sci Rep. 2015 Oct 14;5:15133 - PubMed
  43. Biosci Biotechnol Biochem. 2002 Oct;66(10):2146-53 - PubMed
  44. Methods Cell Biol. 2013;116:167-90 - PubMed
  45. J Biol Chem. 1987 Aug 15;262(23):11275-9 - PubMed
  46. Plant Mol Biol. 2000 Nov;44(4):463-76 - PubMed
  47. Anal Biochem. 1976 May 7;72:248-54 - PubMed
  48. Prog Lipid Res. 2001 Sep;40(5):325-438 - PubMed
  49. J Exp Bot. 2014 Aug;65(15):4317-34 - PubMed
  50. Regul Toxicol Pharmacol. 1999 Oct;30(2 Pt 2):S63-8 - PubMed
  51. Plant Physiol. 2015 Sep;169(1):453-70 - PubMed
  52. Curr Biol. 2015 Jun 1;25(11):R470-81 - PubMed
  53. Genomics Proteomics Bioinformatics. 2012 Dec;10(6):345-53 - PubMed
  54. FEBS Lett. 2003 Nov 6;554(1-2):165-8 - PubMed
  55. Plant Physiol. 1993 Jan;101(1):267-276 - PubMed
  56. Annu Rev Biochem. 2012;81:687-714 - PubMed
  57. Toxicol Sci. 1998 Mar;42(1):13-22 - PubMed
  58. Plant Physiol. 1996 Apr;110(4):1055-61 - PubMed
  59. BMC Plant Biol. 2015 Aug 11;15:193 - PubMed

Publication Types