Display options
Share it on

Can J Infect Dis Med Microbiol. 2016;2016:1462405. doi: 10.1155/2016/1462405. Epub 2016 Jun 07.

Subboiling Moist Heat Favors the Selection of Enteric Pathogen Clostridium difficile PCR Ribotype 078 Spores in Food.

The Canadian journal of infectious diseases & medical microbiology = Journal canadien des maladies infectieuses et de la microbiologie medicale

Alexander Rodriguez-Palacios, Sanja Ilic, Jeffrey T LeJeune

Affiliations

  1. Division of Gastroenterology and Liver Disease, Digestive Health Research Institute, Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
  2. Department of Human Sciences, Human Nutrition, College of Education and Human Ecology, The Ohio State University, Columbus, OH 43210, USA.
  3. Food Animal Health Research Program, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH 44691, USA.

PMID: 27375748 PMCID: PMC4914716 DOI: 10.1155/2016/1462405

Abstract

Emerging enteric pathogens could have not only more antibiotic resistance or virulence traits; they could also have increased resistance to heat. We quantified the effects of minimum recommended cooking and higher temperatures, individually on a collection of C. difficile isolates and on the survival probability of a mixture of emerging C. difficile strains. While minimum recommended cooking time/temperature combinations (63-71°C) allowed concurrently tested strains to survive, higher subboiling temperatures reproducibly favored the selection of newly emerging C. difficile PCR ribotype 078. Survival ratios for "ribotypes 078" :  "other ribotypes" (n = 49 : 45 isolates) from the mid-2000s increased from 1 : 1 and 0.7 : 1 at 85°C (for 5 and 10 minutes, resp.) to 2.3 : 1 and 3 : 1 with heating at 96°C (for 5 and 10 minutes, resp.) indicating an interaction effect between the heating temperature and survival of C. difficile genotypes. In multistrain heating experiments, with PCR ribotypes 027 and 078 from 2004 and reference type strain ATCC 9689 banked in the 1970s, multinomial logistic regression (P < 0.01) revealed PCR ribotype 078 was the most resistant to increasing lethal heat treatments. Thermal processes (during cooking or disinfection) may contribute to the selection of emergent specific virulent strains of C. difficile. Despite growing understanding of the role of cooking on human evolution, little is known about the role of cooking temperatures on the selection and evolution of enteric pathogens, especially spore-forming bacteria.

References

  1. Am J Infect Control. 2008 Feb;36(1):5-11 - PubMed
  2. Foodborne Pathog Dis. 2011 Dec;8(12):1321-3 - PubMed
  3. Eur J Clin Microbiol Infect Dis. 1998 Mar;17(3):137-41 - PubMed
  4. Proc Natl Acad Sci U S A. 2011 Nov 29;108(48):19199-203 - PubMed
  5. J Hum Evol. 2009 Oct;57(4):379-91 - PubMed
  6. Int J Microbiol. 2012;2012:196841 - PubMed
  7. Water Sci Technol. 2002;46(10):225-30 - PubMed
  8. J Food Prot. 2003 Apr;66(4):664-7 - PubMed
  9. Emerg Infect Dis. 2009 May;15(5):802-5 - PubMed
  10. Anim Health Res Rev. 2013 Jun;14(1):11-29 - PubMed
  11. PLoS One. 2008 Feb 27;3(2):e1700 - PubMed
  12. J Food Prot. 2011 Oct;74(10):1618-24 - PubMed
  13. Appl Environ Microbiol. 2011 May;77(10):3391-7 - PubMed
  14. Curr Anthropol. 1999 Dec;40(5):567-594 - PubMed
  15. J Food Prot. 2012 Jan;75(1):48-61 - PubMed
  16. Epidemiol Infect. 2012 Feb;140(2):276-82 - PubMed
  17. Emerg Infect Dis. 2006 Nov;12(11):1730-6 - PubMed
  18. Infect Immun. 1979 Jul;25(1):191-201 - PubMed
  19. MMWR Morb Mortal Wkly Rep. 2008 Apr 4;57(13):340-3 - PubMed
  20. Anaerobe. 2010 Oct;16(5):540-2 - PubMed
  21. Infect Control Hosp Epidemiol. 2010 Jan;31(1):21-7 - PubMed
  22. Can J Infect Dis Med Microbiol. 2012 Spring;23(1):28-30 - PubMed
  23. N Engl J Med. 2005 Dec 8;353(23):2433-41 - PubMed
  24. Appl Environ Microbiol. 2011 May;77(9):3085-91 - PubMed
  25. Science. 2005 Sep 30;309(5744):2185-9 - PubMed
  26. Emerg Infect Dis. 2009 May;15(5):819-21 - PubMed
  27. Anaerobe. 2009 Dec;15(6):256-60 - PubMed
  28. FEMS Microbiol Lett. 1999 Jun 15;175(2):261-6 - PubMed
  29. J Pathog. 2014;2014:158601 - PubMed
  30. Lett Appl Microbiol. 2010 Apr;50(4):362-5 - PubMed
  31. J Hosp Infect. 2012 May;81(1):1-14 - PubMed
  32. Infect Immun. 2009 Sep;77(9):3661-9 - PubMed
  33. Epidemiol Infect. 2010 Jun;138(6):907-14 - PubMed
  34. Lett Appl Microbiol. 2003;37(4):292-8 - PubMed
  35. MMWR Morb Mortal Wkly Rep. 2009 Jun 12;58(22):609-15 - PubMed
  36. Emerg Infect Dis. 2007 Mar;13(3):485-7 - PubMed
  37. J Clin Microbiol. 2007 Jun;45(6):1963-4 - PubMed
  38. Infect Dis Clin North Am. 2013 Sep;27(3):675-85 - PubMed
  39. Anaerobe. 2011 Apr;17(2):85-6 - PubMed
  40. Clin Infect Dis. 2008 Nov 1;47(9):1162-70 - PubMed
  41. Med Dosw Mikrobiol. 2004;56(2):155-9 - PubMed
  42. Can J Infect Dis Med Microbiol. 2016;2016:8207418 - PubMed
  43. Lett Appl Microbiol. 2010 Nov;51(5):600-2 - PubMed
  44. Clin Microbiol Infect. 2007 May;13(5):457-9 - PubMed
  45. Clin Infect Dis. 2010 Sep 1;51(5):577-82 - PubMed
  46. Foodborne Pathog Dis. 2010 Sep;7(9):1031-7 - PubMed
  47. Emerg Infect Dis. 2010 Apr;16(4):678-81 - PubMed
  48. J Bacteriol. 2009 Sep;191(18):5584-91 - PubMed
  49. Lancet. 2005 Sep 24-30;366(9491):1079-84 - PubMed
  50. Appl Environ Microbiol. 2012 Aug;78(15):5153-9 - PubMed

Publication Types

Grant support