Display options
Share it on

Rep Prog Phys. 2016 Aug;79(8):084504. doi: 10.1088/0034-4885/79/8/084504. Epub 2016 Jul 04.

Frustration and chiral orderings in correlated electron systems.

Reports on progress in physics. Physical Society (Great Britain)

Cristian D Batista, Shi-Zeng Lin, Satoru Hayami, Yoshitomo Kamiya

Affiliations

  1. Department of Physics and Astronomy, The University of Tennessee, Knoxville, TN 37996, USA. Theory Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

PMID: 27376461 DOI: 10.1088/0034-4885/79/8/084504

Abstract

The term frustration refers to lattice systems whose ground state cannot simultaneously satisfy all the interactions. Frustration is an important property of correlated electron systems, which stems from the sign of loop products (similar to Wilson products) of interactions on a lattice. It was early recognized that geometric frustration can produce rather exotic physical behaviors, such as macroscopic ground state degeneracy and helimagnetism. The interest in frustrated systems was renewed two decades later in the context of spin glasses and the emergence of magnetic superstructures. In particular, Phil Anderson's proposal of a quantum spin liquid ground state for a two-dimensional lattice S  =  1/2 Heisenberg magnet generated a very active line of research that still continues. As a result of these early discoveries and conjectures, the study of frustrated models and materials exploded over the last two decades. Besides the large efforts triggered by the search of quantum spin liquids, it was also recognized that frustration plays a crucial role in a vast spectrum of physical phenomena arising from correlated electron materials. Here we review some of these phenomena with particular emphasis on the stabilization of chiral liquids and non-coplanar magnetic orderings. In particular, we focus on the ubiquitous interplay between magnetic and charge degrees of freedom in frustrated correlated electron systems and on the role of anisotropy. We demonstrate that these basic ingredients lead to exotic phenomena, such as, charge effects in Mott insulators, the stabilization of single magnetic vortices, as well as vortex and skyrmion crystals, and the emergence of different types of chiral liquids. In particular, these orderings appear more naturally in itinerant magnets with the potential of inducing a very large anomalous Hall effect.

Publication Types