Display options
Share it on

Iran J Microbiol. 2016 Apr;8(2):85-92.

Modulation of antibiotic resistance in Pseudomonas aeruginosa by ZnO nanoparticles.

Iranian journal of microbiology

Elnaz Bayroodi, Razieh Jalal

Affiliations

  1. Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran.
  2. Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran; Cell and Molecular Biotechnology Research Group, Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran.

PMID: 27307973 PMCID: PMC4906724

Abstract

BACKGROUND AND OBJECTIVES: Bacterial resistance to conventional antibiotics has become a widespread public health problem. The aim of this study was to investigate the influence of zinc oxide nanoparticles (ZnO NPs) on the antibacterial activity of several conventional antibiotics against Pseudomonas aeruginosa.

MATERIALS AND METHODS: ZnO NPs were prepared by solvothermal method and dispersed in glycerol with the help of ammonium citrate as a dispersant. The antibacterial effects of the resulting ZnO nanofluid, ceftazidime, tobramycin, and ciprofloxacin were investigated against two P. aeruginosa strains, including one clinical isolate and P. aeruginosa ATCC 9027 using microdilution method. For the evaluation of the combined effect of ZnO nanofluid and antibiotics, the fractional inhibitory concentration indices were calculated and isobolograms were plotted.

RESULTS: Clinical strain in comparison to standard strain of P. aeruginosa showed more resistance to ZnO nanofluid and the antibiotics. ZnO nanofluid acted synergistically with ceftazidime and tobramycin against both strains. Combination of ZnO nanofluid and ciprofloxacin displayed synergistic and partial synergistic activity against clinical and standard strains of P. aeruginosa, respectively.

CONCLUSION: The results suggest that bacterial resistance to antimicrobials could be reduced by the synergistic action of ZnO NPs.

Keywords: Ceftazidime; Ciprofloxacin; Pseudomonas aeruginosa; Tobramycin; ZnO nanoparticles

References

  1. Lett Appl Microbiol. 1999 Jan;28(1):13-6 - PubMed
  2. Microbiology. 2001 Oct;147(Pt 10):2659-69 - PubMed
  3. Eur J Med Chem. 2002 Jun;37(6):443-60 - PubMed
  4. J R Soc Med. 2002;95 Suppl 41:22-6 - PubMed
  5. J Antimicrob Chemother. 2002 Dec;50(6):1045-9 - PubMed
  6. J Inorg Biochem. 2003 Aug 1;96(2-3):407-15 - PubMed
  7. Clin Infect Dis. 2004 Mar 15;38(6):864-70 - PubMed
  8. Chemistry. 2005 Nov 4;11(22):6673-86 - PubMed
  9. Nano Lett. 2006 Apr;6(4):866-70 - PubMed
  10. J Inorg Biochem. 2006 Oct;100(10):1705-13 - PubMed
  11. FEMS Microbiol Lett. 2008 Feb;279(1):71-6 - PubMed
  12. Appl Phys Lett. 2007 May 24;90(213902):2139021-2139023 - PubMed
  13. Int J Antimicrob Agents. 2009 Mar;33(3):201-5 - PubMed
  14. Int J Biol Sci. 2009;5(2):153-60 - PubMed
  15. Front Biosci (Elite Ed). 2010 Jan 01;2:241-9 - PubMed
  16. Yonsei Med J. 2010 Jan;51(1):111-6 - PubMed
  17. J Biomed Mater Res B Appl Biomater. 2010 May;93(2):557-61 - PubMed
  18. Biochem Biophys Res Commun. 2010 Sep 3;399(4):581-6 - PubMed
  19. Int J Biol Sci. 2010 Sep 21;6(6):556-68 - PubMed
  20. Environ Sci Technol. 2011 Mar 1;45(5):1977-83 - PubMed
  21. Langmuir. 2011 Apr 5;27(7):4020-8 - PubMed
  22. Int J Nanomedicine. 2011;6:1463-73 - PubMed
  23. Nanotoxicology. 2014 Feb;8(1):107-16 - PubMed
  24. Acta Chim Slov. 2013;60(3):660-5 - PubMed
  25. Food Addit Contam Part A Chem Anal Control Expo Risk Assess. 2014;31(2):173-86 - PubMed
  26. Sci Technol Adv Mater. 2008 Sep 1;9(3):035004 - PubMed
  27. Antimicrob Agents Chemother. 1996 Mar;40(3):677-83 - PubMed
  28. Antimicrob Agents Chemother. 1997 Jan;41(1):95-100 - PubMed
  29. Emerg Infect Dis. 1998 Oct-Dec;4(4):551-60 - PubMed

Publication Types