Display options
Share it on

F1000Res. 2016 May 24;5. doi: 10.12688/f1000research.7698.1. eCollection 2016.

Dynamical systems, attractors, and neural circuits.

F1000Research

Paul Miller

Affiliations

  1. Volen National Center for Complex Systems, Brandeis University, Waltham, Massachusetts, 02454-9110, USA.

PMID: 27408709 PMCID: PMC4930057 DOI: 10.12688/f1000research.7698.1

Abstract

Biology is the study of dynamical systems. Yet most of us working in biology have limited pedagogical training in the theory of dynamical systems, an unfortunate historical fact that can be remedied for future generations of life scientists. In my particular field of systems neuroscience, neural circuits are rife with nonlinearities at all levels of description, rendering simple methodologies and our own intuition unreliable. Therefore, our ideas are likely to be wrong unless informed by good models. These models should be based on the mathematical theories of dynamical systems since functioning neurons are dynamic-they change their membrane potential and firing rates with time. Thus, selecting the appropriate type of dynamical system upon which to base a model is an important first step in the modeling process. This step all too easily goes awry, in part because there are many frameworks to choose from, in part because the sparsely sampled data can be consistent with a variety of dynamical processes, and in part because each modeler has a preferred modeling approach that is difficult to move away from. This brief review summarizes some of the main dynamical paradigms that can arise in neural circuits, with comments on what they can achieve computationally and what signatures might reveal their presence within empirical data. I provide examples of different dynamical systems using simple circuits of two or three cells, emphasizing that any one connectivity pattern is compatible with multiple, diverse functions.

Keywords: Heteroclinics; Marginal states; Oscillating systems; Point attractors; continuous attractors; cyclic attractors; hidden Markov model; limit cycles; line attractors; strange attractors

References

  1. Front Comput Neurosci. 2013 May 09;7:59 - PubMed
  2. Neural Comput. 2013 Aug;25(8):1994-2037 - PubMed
  3. Front Physiol. 2012 Jun 07;3:163 - PubMed
  4. Science. 2001 Feb 23;291(5508):1560-3 - PubMed
  5. Neuron. 2016 Apr 6;90(1):128-42 - PubMed
  6. J Neurophysiol. 2000 Aug;84(2):1035-49 - PubMed
  7. J Neurophysiol. 2007 Sep;98(3):1125-39 - PubMed
  8. Phys Rev Lett. 2009 Nov 20;103(21):218101 - PubMed
  9. Phys Rev Lett. 2006 Nov 3;97(18):188103 - PubMed
  10. Hippocampus. 2005;15(7):913-22 - PubMed
  11. Front Physiol. 2012 Feb 08;3:15 - PubMed
  12. Neuron. 2000 Apr;26(1):259-71 - PubMed
  13. Chaos. 2013 Mar;23(1):013135 - PubMed
  14. Phys Rev A. 1990 Feb 15;41(4):1843-1854 - PubMed
  15. J Neurosci. 2001 May 1;21(9):3175-83 - PubMed
  16. J Comput Neurosci. 2005 Mar-Apr;18(2):183-203 - PubMed
  17. Annu Rev Neurosci. 2012;35:203-25 - PubMed
  18. Network. 2000 Nov;11(4):261-80 - PubMed
  19. J Vis. 2008 May 19;8(7):1.1-15 - PubMed
  20. Neural Comput. 2008 Feb;20(2):452-85 - PubMed
  21. Proc Natl Acad Sci U S A. 1982 Apr;79(8):2554-8 - PubMed
  22. Cereb Cortex. 2007 Oct;17(10):2443-52 - PubMed
  23. Front Comput Neurosci. 2010 Oct 04;4:24 - PubMed
  24. Science. 2015 Jul 10;349(6244):184-7 - PubMed
  25. Elife. 2015 Feb 02;4:null - PubMed
  26. Science. 1995 Feb 17;267(5200):1028-30 - PubMed
  27. Nature. 1999 Jun 3;399(6735):470-3 - PubMed
  28. Neuron. 2009 Aug 27;63(4):544-57 - PubMed
  29. Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Dec;90(6):062710 - PubMed
  30. J Neurosci. 2016 Jan 20;36(3):655-69 - PubMed
  31. Proc Natl Acad Sci U S A. 1995 Sep 12;92(19):8616-20 - PubMed
  32. Proc Natl Acad Sci U S A. 1995 Apr 25;92(9):3844-8 - PubMed
  33. Nature. 1988 Oct 27;335(6193):817-20 - PubMed
  34. Phys Rev Lett. 2004 Dec 3;93(23):238104 - PubMed
  35. Front Comput Neurosci. 2011 Jun 29;5:30 - PubMed
  36. Chaos. 2002 Sep;12(3):672-677 - PubMed
  37. Sci Rep. 2014 Mar 13;4:4312 - PubMed
  38. Hippocampus. 2015 Oct;25(10):1073-188 - PubMed
  39. J Neurosci. 2005 Jan 26;25(4):1002-14 - PubMed
  40. J Neurosci. 1996 Mar 15;16(6):2112-26 - PubMed
  41. PLoS Comput Biol. 2015 Apr 24;11(4):e1004252 - PubMed
  42. J Comput Neurosci. 2000 Sep-Oct;9(2):171-85 - PubMed
  43. Nat Neurosci. 2010 Mar;13(3):369-78 - PubMed
  44. Neural Comput. 1998 Aug 15;10(6):1321-71 - PubMed
  45. Biol Psychiatry. 2015 Jun 15;77(12):1071-8 - PubMed
  46. J Neurosci. 2010 Nov 24;30(47):15801-10 - PubMed
  47. Proc Natl Acad Sci U S A. 1984 May;81(10):3088-92 - PubMed
  48. Nat Neurosci. 2013 Jul;16(7):925-33 - PubMed
  49. J Neurosci. 1997 Jun 1;17(11):4382-8 - PubMed
  50. J Neurosci. 2012 Mar 7;32(10):3366-75 - PubMed
  51. Nat Neurosci. 2010 Jan;13(1):9-17 - PubMed
  52. J Comput Neurosci. 2001 Jul-Aug;11(1):63-85 - PubMed
  53. J Neurophysiol. 2000 May;83(5):2602-9 - PubMed
  54. Nat Neurosci. 2002 Aug;5(8):775-82 - PubMed
  55. Phys Rev Lett. 2012 May 18;108(20):208102 - PubMed
  56. J Neurophysiol. 2006 Feb;95(2):1099-114 - PubMed
  57. Neuron. 2013 Mar 20;77(6):1002-16 - PubMed
  58. J Neurophysiol. 2005 May;93(5):2832-40 - PubMed
  59. Proc Natl Acad Sci U S A. 2011 Jul 26;108(30):12491-6 - PubMed
  60. Proc Natl Acad Sci U S A. 2015 Sep 15;112(37):11508-13 - PubMed
  61. Phys Rev Lett. 1988 Jul 18;61(3):259-262 - PubMed
  62. Chaos. 2003 Sep;13(3):926-36 - PubMed
  63. J Neurosci. 2003 Dec 3;23(35):11167-77 - PubMed
  64. Proc Natl Acad Sci U S A. 1989 Oct;86(20):7871-5 - PubMed
  65. Philos Trans A Math Phys Eng Sci. 2008 Feb 13;366(1864):329-43 - PubMed
  66. Neuron. 2015 Jan 21;85(2):402-17 - PubMed
  67. Cereb Cortex. 2003 Nov;13(11):1208-18 - PubMed
  68. Physiol Rev. 1996 Jul;76(3):687-717 - PubMed
  69. J Comput Neurosci. 2013 Dec;35(3):261-94 - PubMed
  70. J Neurosci. 2005 Nov 9;25(45):10420-36 - PubMed
  71. Neural Comput. 2004 Jul;16(7):1413-36 - PubMed
  72. Physiol Rev. 2010 Jul;90(3):1195-268 - PubMed
  73. Prog Neurobiol. 2013 Apr;103:214-22 - PubMed
  74. Proc Natl Acad Sci U S A. 2007 Nov 20;104(47):18772-7 - PubMed
  75. Curr Opin Neurobiol. 2015 Apr;31:199-205 - PubMed
  76. Curr Biol. 2006 Jul 11;16(13):1351-7 - PubMed
  77. J Neurosci. 1996 Jan 15;16(2):752-68 - PubMed
  78. Neural Comput. 2015 Oct;27(10):2011-38 - PubMed
  79. Curr Opin Neurobiol. 2015 Apr;31:67-71 - PubMed
  80. Neural Comput. 1998 Jul 1;10(5):1119-35 - PubMed
  81. Phys Rev E Stat Nonlin Soft Matter Phys. 2010 Jul;82(1 Pt 1):011903 - PubMed
  82. Biol Cybern. 2007 May;96(5):487-96 - PubMed
  83. Science. 1996 Dec 6;274(5293):1724-6 - PubMed
  84. Atten Percept Psychophys. 2015 Apr;77(3):867-82 - PubMed
  85. Cereb Cortex. 2000 Sep;10(9):910-23 - PubMed
  86. Biophys J. 1961 Jul;1(6):445-66 - PubMed
  87. Bioinspir Biomim. 2015 Feb 25;10(2):026001 - PubMed
  88. Science. 2008 Mar 14;319(5869):1543-6 - PubMed
  89. Behav Sci. 1978 Sep;23(5):318-34 - PubMed
  90. Proc Natl Acad Sci U S A. 1996 Nov 12;93(23):13339-44 - PubMed
  91. Science. 2004 Jun 25;304(5679):1926-9 - PubMed
  92. Vision Res. 1984;24(10):1321-31 - PubMed
  93. Proc Natl Acad Sci U S A. 1968 Feb;59(2):368-72 - PubMed
  94. Nature. 2013 Nov 7;503(7474):78-84 - PubMed
  95. Chaos. 2006 Sep;16(3):033114 - PubMed
  96. J Neurosci. 1999 Nov 1;19(21):9587-603 - PubMed
  97. Neural Comput. 2004 Jul;16(7):1385-412 - PubMed
  98. PLoS Comput Biol. 2008 May 02;4(5):e1000072 - PubMed
  99. Nature. 2013 May 30;497(7451):585-90 - PubMed
  100. J Neurosci. 2010 Feb 17;30(7):2559-70 - PubMed
  101. Nat Neurosci. 2001 Aug;4(8):826-31 - PubMed
  102. J Physiol Paris. 2003 Jul-Nov;97(4-6):683-94 - PubMed
  103. Neural Comput. 2002 Nov;14(11):2531-60 - PubMed
  104. Chaos. 2004 Dec;14(4):1123-9 - PubMed
  105. Phys Rev A. 1990 Aug 15;42(4):2418-2430 - PubMed
  106. Neural Comput. 1998 Feb 15;10(2):431-50 - PubMed

Publication Types