Display options
Share it on

Nature. 2016 Aug 11;536(7615):197-200. doi: 10.1038/nature18593. Epub 2016 Jul 13.

Single-layer MoS2 nanopores as nanopower generators.

Nature

Jiandong Feng, Michael Graf, Ke Liu, Dmitry Ovchinnikov, Dumitru Dumcenco, Mohammad Heiranian, Vishal Nandigana, Narayana R Aluru, Andras Kis, Aleksandra Radenovic

PMID: 27409806 DOI: 10.1038/nature18593

Abstract

Making use of the osmotic pressure difference between fresh water and seawater is an attractive, renewable and clean way to generate power and is known as 'blue energy'. Another electrokinetic phenomenon, called the streaming potential, occurs when an electrolyte is driven through narrow pores either by a pressure gradient or by an osmotic potential resulting from a salt concentration gradient. For this task, membranes made of two-dimensional materials are expected to be the most efficient, because water transport through a membrane scales inversely with membrane thickness. Here we demonstrate the use of single-layer molybdenum disulfide (MoS2) nanopores as osmotic nanopower generators. We observe a large, osmotically induced current produced from a salt gradient with an estimated power density of up to 10(6) watts per square metre--a current that can be attributed mainly to the atomically thin membrane of MoS2. Low power requirements for nanoelectronic and optoelectric devices can be provided by a neighbouring nanogenerator that harvests energy from the local environment--for example, a piezoelectric zinc oxide nanowire array or single-layer MoS2 (ref. 12). We use our MoS2 nanopore generator to power a MoS2 transistor, thus demonstrating a self-powered nanosystem.

References

  1. Phys Rev Lett. 2005 Sep 9;95(11):116104 - PubMed
  2. ACS Nano. 2014 Aug 26;8(8):7914-22 - PubMed
  3. Science. 2006 Apr 14;312(5771):242-6 - PubMed
  4. ACS Nano. 2014 Mar 25;8(3):2504-11 - PubMed
  5. Nat Commun. 2015 Oct 14;6:8616 - PubMed
  6. Nature. 2014 Oct 23;514(7523):470-4 - PubMed
  7. Adv Mater. 2012 Jan 10;24(2):280-5 - PubMed
  8. Nano Lett. 2015 May 13;15(5):3431-8 - PubMed
  9. Science. 1976 Feb 13;191(4227):557-9 - PubMed
  10. Nano Lett. 2008 Jul;8(7):1978-85 - PubMed
  11. Nano Lett. 2012 Aug 8;12(8):4037-44 - PubMed
  12. Science. 1975 Aug 22;189(4203):654-5 - PubMed
  13. Chem Commun (Camb). 2012 Jul 4;48(52):6484-6 - PubMed
  14. Phys Rev A Gen Phys. 1985 Mar;31(3):1695-1697 - PubMed
  15. Nat Nanotechnol. 2012 Jan 15;7(2):133-9 - PubMed
  16. Nature. 2007 Oct 18;449(7164):885-9 - PubMed
  17. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  18. J Colloid Interface Sci. 2012 Oct 15;384(1):162-71 - PubMed
  19. Nanotechnology. 2013 Dec 13;24(49):495102 - PubMed
  20. Chem Soc Rev. 2010 Mar;39(3):1073-95 - PubMed
  21. ACS Nano. 2015 Apr 28;9(4):4611-20 - PubMed
  22. Phys Rev Lett. 2004 Jul 16;93(3):035901 - PubMed
  23. ACS Nano. 2015 Jul 28;9(7):7352-9 - PubMed
  24. Nat Commun. 2013;4:1776 - PubMed
  25. Nature. 2013 Feb 28;494(7438):455-8 - PubMed
  26. Nat Nanotechnol. 2010 May;5(5):366-73 - PubMed
  27. Nature. 2012 Aug 16;488(7411):313-9 - PubMed
  28. Nat Nanotechnol. 2015 May;10(5):459-64 - PubMed

Publication Types