Display options
Share it on

J Am Chem Soc. 2016 Jul 27;138(29):9119-27. doi: 10.1021/jacs.6b01323. Epub 2016 Jul 13.

Observation of Binding and Rotation of Methane and Hydrogen within a Functional Metal-Organic Framework.

Journal of the American Chemical Society

Mathew Savage, Ivan da Silva, Mark Johnson, Joseph H Carter, Ruth Newby, Mikhail Suyetin, Elena Besley, Pascal Manuel, Svemir Rudić, Andrew N Fitch, Claire Murray, William I F David, Sihai Yang, Martin Schröder

Affiliations

  1. School of Chemistry, University of Manchester , Oxford Road, Manchester M13?9PL, United Kingdom.
  2. ISIS Facility, STFC Rutherford Appleton Laboratory , Chilton, Oxfordshire OX11?0QX, United Kingdom.
  3. ILL Neutron Facility , Grenoble 38043, France.
  4. School of Chemistry, University of Nottingham , University Park, Nottingham NG7?2RD, United Kingdom.
  5. European Synchrotron Radiation Facility , Grenoble 38043, France.
  6. Diamond Light Source , Harwell Science Campus, Oxfordshire OX11?0DE, United Kingdom.

PMID: 27410670 PMCID: PMC4965839 DOI: 10.1021/jacs.6b01323

Abstract

The key requirement for a portable store of natural gas is to maximize the amount of gas within the smallest possible space. The packing of methane (CH4) in a given storage medium at the highest possible density is, therefore, a highly desirable but challenging target. We report a microporous hydroxyl-decorated material, MFM-300(In) (MFM = Manchester Framework Material, replacing the NOTT designation), which displays a high volumetric uptake of 202 v/v at 298 K and 35 bar for CH4 and 488 v/v at 77 K and 20 bar for H2. Direct observation and quantification of the location, binding, and rotational modes of adsorbed CH4 and H2 molecules within this host have been achieved, using neutron diffraction and inelastic neutron scattering experiments, coupled with density functional theory (DFT) modeling. These complementary techniques reveal a very efficient packing of H2 and CH4 molecules within MFM-300(In), reminiscent of the condensed gas in pure component crystalline solids. We also report here, for the first time, the experimental observation of a direct binding interaction between adsorbed CH4 molecules and the hydroxyl groups within the pore of a material. This is different from the arrangement found in CH4/water clathrates, the CH4 store of nature.

References

  1. Nat Chem. 2012 Nov;4(11):887-94 - PubMed
  2. Acta Crystallogr B Struct Sci Cryst Eng Mater. 2014 Jun;70(Pt 3):404-22 - PubMed
  3. Science. 2010 Jul 23;329(5990):424-8 - PubMed
  4. Chemistry. 2010 May 3;16(17):5205-14 - PubMed
  5. J Am Chem Soc. 2013 Aug 14;135(32):11887-94 - PubMed
  6. J Am Chem Soc. 2008 Jan 16;130(2):406-7 - PubMed
  7. Chem Soc Rev. 2012 Dec 7;41(23):7761-79 - PubMed
  8. J Am Chem Soc. 2010 Jan 13;132(1):38-9 - PubMed
  9. Chem Rev. 2012 Feb 8;112(2):782-835 - PubMed
  10. Chem Commun (Camb). 2012 Oct 9;48(78):9696-8 - PubMed
  11. J Am Chem Soc. 2009 Apr 8;131(13):4995-5000 - PubMed
  12. Chem Commun (Camb). 2008 Jan 21;(3):359-61 - PubMed
  13. Nat Chem. 2014 Feb;7(2):121-9 - PubMed
  14. Chem Commun (Camb). 2011 Jan 28;47(4):1157-9 - PubMed
  15. J Am Chem Soc. 2004 Aug 4;126(30):9407-12 - PubMed
  16. J Comput Chem. 2006 Nov 30;27(15):1787-99 - PubMed
  17. J Am Chem Soc. 2009 Feb 18;131(6):2159-71 - PubMed
  18. J Am Chem Soc. 2014 Apr 9;136(14):5271-4 - PubMed
  19. Science. 2010 Aug 27;329(5995):1053-7 - PubMed
  20. Angew Chem Int Ed Engl. 2011 Mar 28;50(14):3178-81 - PubMed
  21. Chemistry. 2009;15(19):4829-35 - PubMed
  22. Dalton Trans. 2012 Apr 14;41(14):4180-7 - PubMed
  23. Nat Mater. 2012 Jun 03;11(8):710-6 - PubMed
  24. Chemistry. 2014 Jun 10;20(24):7317-24 - PubMed
  25. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  26. J Comput Chem. 2012 Sep 30;33(25):2043-8 - PubMed
  27. Chemistry. 2014 Jun 23;20(26):8024-9 - PubMed

Publication Types