Display options
Share it on

Front Microbiol. 2016 Jun 15;7:929. doi: 10.3389/fmicb.2016.00929. eCollection 2016.

Photodynamic Inactivation of Root Canal Bacteria by Light Activation through Human Dental Hard and Simulated Surrounding Tissue.

Frontiers in microbiology

Fabian Cieplik, Andreas Pummer, Christoph Leibl, Johannes Regensburger, Gottfried Schmalz, Wolfgang Buchalla, Karl-Anton Hiller, Tim Maisch

Affiliations

  1. Department of Conservative Dentistry and Periodontology, University Medical Center Regensburg Regensburg, Germany.
  2. Department of Conservative Dentistry and Periodontology, University Medical Center RegensburgRegensburg, Germany; Private PracticeGeiselhöring, Germany.
  3. Department of Dermatology, University Medical Center Regensburg Regensburg, Germany.
  4. Department of Conservative Dentistry and Periodontology, University Medical Center RegensburgRegensburg, Germany; Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of BernBern, Switzerland.

PMID: 27379059 PMCID: PMC4908107 DOI: 10.3389/fmicb.2016.00929

Abstract

INTRODUCTION: Photodynamic inactivation of bacteria (PIB) may be a supportive antimicrobial approach for use in endodontics, but sufficient activation of photosensitizers (PS) in root canals is a critical point. Therefore, aim of this study was to evaluate the ability of PS absorbing blue (TMPyP) or red light (Methylene Blue; MB) for light activation through human dental hard and simulated surrounding tissue to inactivate root canal bacteria.

METHODS: A tooth model was fabricated with a human premolar and two molars in an acrylic resin bloc simulating the optical properties of a porcine jaw. The distal root canal of the first molar was enlarged to insert a glass tube (external diameter 2 mm) containing PS and stationary-phase Enterococcus faecalis. Both PS (10 μM) were irradiated for 120 s with BlueV (20 mW/cm(2); λem = 400-460 nm) or PDT 1200L (37.8 mW/cm(2); λem = 570-680 nm; both: Waldmann Medizintechnik), respectively. Irradiation parameters ensured identical numbers of photons absorbed by each PS. Three setups were chosen: irradiating the glass pipette only (G), the glass pipette inside the single tooth without (GT) and with (GTM) simulated surrounding tissues. Colony forming units (CFU) were evaluated. Transmission measurements of the buccal halves of hemisected mandibular first molars were performed by means of a photospectrometer.

RESULTS: PIB with both PS led to reduction by ≥ 5 log10 of E. faecalis CFU for each setup. From transmission measurements, a threshold wavelength λth for allowing an amount of light transmission for sufficient activation of PS was determined to be 430 nm.

CONCLUSION: This study can be seen as proof of principle that light activation of given intra-canal PS from outside a tooth may be possible at wavelengths ≥ 430 nm, facilitating clinical application of PIB in endodontics.

Keywords: Enterococcus faecalis; endodontics; optical fiber; photodynamic; transmission

References

  1. J Hyg (Lond). 1938 Nov;38(6):732-49 - PubMed
  2. Int Dent J. 2009 Feb;59(1):5-11 - PubMed
  3. Aust Dent J. 2007 Mar;52(1 Suppl):S64-82 - PubMed
  4. J Endod. 2004 Apr;30(4):218-9 - PubMed
  5. Free Radic Biol Med. 2013 Dec;65:477-87 - PubMed
  6. Int Endod J. 2002 Mar;35(3):221-8 - PubMed
  7. J Endod. 2006 May;32(5):389-98 - PubMed
  8. Int Endod J. 1996 Jul;29(4):228-34 - PubMed
  9. N Engl J Med. 2009 Jan 29;360(5):439-43 - PubMed
  10. J Endod. 2006 Feb;32(2):93-8 - PubMed
  11. J Endod. 2008 Jun;34(6):728-34 - PubMed
  12. J Antimicrob Chemother. 1998 Jul;42(1):13-28 - PubMed
  13. BMC Res Notes. 2014 Oct 10;7:711 - PubMed
  14. Int Endod J. 2013 May;46(5):449-57 - PubMed
  15. Infect Control Hosp Epidemiol. 2002 Dec;23(12 Suppl):S3-40 - PubMed
  16. Int Endod J. 2000 May;33(3):227-32 - PubMed
  17. Lasers Surg Med. 2014 Mar;46(3):235-43 - PubMed
  18. J Appl Microbiol. 2009 Nov;107(5):1569-78 - PubMed
  19. Front Microbiol. 2015 Jul 15;6:706 - PubMed
  20. J Endod. 2011 Feb;37(2):217-22 - PubMed
  21. Future Microbiol. 2013 Jun;8(6):785-97 - PubMed
  22. Clin Oral Investig. 2013 May;17(4):1113-25 - PubMed
  23. Lasers Med Sci. 2013 Jan;28(1):79-85 - PubMed
  24. J Endod. 2014 Jul;40(7):891-8 - PubMed
  25. Phys Rev Lett. 2006 Jul 7;97(1):018104 - PubMed
  26. Front Microbiol. 2014 Aug 12;5:405 - PubMed
  27. Phys Med Biol. 2003 Jan 21;48(2):N7-14 - PubMed
  28. Chonnam Med J. 2012 Dec;48(3):133-40 - PubMed
  29. Chem Rev. 2003 May;103(5):1685-757 - PubMed
  30. Int Endod J. 2016 May;49(5):422-30 - PubMed
  31. J Dent Res. 2006 Oct;85(10):955-9 - PubMed
  32. Lasers Surg Med. 2007 Dec;39(10):782-7 - PubMed
  33. J Med Chem. 2014 Jun 26;57(12):5157-68 - PubMed
  34. J Endod. 2014 Feb;40(2):223-30 - PubMed

Publication Types