Display options
Share it on

Front Plant Sci. 2016 Jun 15;7:814. doi: 10.3389/fpls.2016.00814. eCollection 2016.

Extensin and Arabinogalactan-Protein Biosynthesis: Glycosyltransferases, Research Challenges, and Biosensors.

Frontiers in plant science

Allan M Showalter, Debarati Basu

Affiliations

  1. Department of Environmental and Plant Biology, Molecular and Cellular Biology Program, Ohio University Athens, OH, USA.

PMID: 27379116 PMCID: PMC4908140 DOI: 10.3389/fpls.2016.00814

Abstract

Recent research, mostly in Arabidopsis thaliana, has led to the identification and characterization of the glycosyltransferases responsible for the biosynthesis of two of the most functionally important and abundant families of plant cell wall proteins, extensins, and arabinogalactan-proteins. Extensin glycosylation involves monogalactosylation of serine residues by O-α-serine galactosyltransferase and the addition of oligoarabinosides one to five arabinose units in length to contiguous hydroxyproline residues by a set of specific arabinosyltransferase enzymes, which includes hydroxyproline O-β-arabinosyltransferases, β-1,2-arabinosyltransferases, and at least one α-1,3-arabinosyltransferase. AGP glycosylation, however, is much more complex and involves the addition of large arabinogalactan polysaccharide chains to non-contiguous hydroxyproline residues. These arabinogalactan chains are composed of β-1,3-galactan backbones decorated with β-1,6-galactose side chains that are further modified with α-arabinose as well as other sugars, including β-(methyl)glucuronic acid, α-rhamnose, and α-fucose. Specific sets of hydroxyproline O-β-galactosyltransferases, β-1,3-galactosyltransferases, β-1,6-galactosyltransferases, α-arabinosyltransferases, β-glucuronosyltransferases, α-rhamnosyltransferases, and α-fucosyltransferases are responsible for the synthesis of these complex structures. This mini-review summarizes the EXT and AGP glycosyltransferases identified and characterized to date along with corresponding genetic mutant data, which addresses the functional importance of EXT and AGP glycosylation. In one case, genetic mutant data indicate that the carbohydrate moiety of arabinogalactan-proteins may serve as an extracellular biosensor or signal for normal cellular growth. Finally, future research challenges with respect to understanding the function of these enzymes more completely and discovering and characterizing additional glycosyltransferases responsible for extensin and arabinogalactan-protein biosynthesis are also discussed.

Keywords: arabinogalactan-protein; biosynthesis; cell wall; extensin; glycosyltransferases; hydroxyproline; hydroxyproline-rich glycoproteins; signaling

References

  1. Annu Rev Plant Biol. 2007;58:137-61 - PubMed
  2. BMC Plant Biol. 2015 Dec 21;15:295 - PubMed
  3. Front Plant Sci. 2014 Jun 11;5:198 - PubMed
  4. Plant Physiol. 2010 Jun;153(2):485-513 - PubMed
  5. Plant Mol Biol. 2008 Sep;68(1-2):43-59 - PubMed
  6. Mol Plant. 2013 Jul;6(4):1369-72 - PubMed
  7. Plant J. 2015 Mar;81(5):736-46 - PubMed
  8. Plant J. 1994 Feb;5(2):157-72 - PubMed
  9. Cell Mol Life Sci. 2001 Sep;58(10 ):1399-417 - PubMed
  10. Plant Signal Behav. 2014;9(6):e28891 - PubMed
  11. Front Plant Sci. 2012 Jun 27;3:140 - PubMed
  12. Phytochemistry. 1998 Feb;47(3):349-53 - PubMed
  13. Plant Cell. 1993 Jan;5(1):9-23 - PubMed
  14. Nat Chem Biol. 2013 Nov;9(11):726-30 - PubMed
  15. PLoS One. 2014 Mar 25;9(3):e93291 - PubMed
  16. PLoS One. 2015 May 14;10 (5):e0125624 - PubMed
  17. PLoS One. 2016 Jan 05;11(1):e0145092 - PubMed
  18. Proc Natl Acad Sci U S A. 2009 Aug 25;106(34):14699-704 - PubMed
  19. Plant Cell. 2008 Nov;20(11):3065-79 - PubMed
  20. Plant Cell. 2013 Jan;25(1):270-87 - PubMed
  21. Science. 2011 Jun 17;332(6036):1401-3 - PubMed
  22. Plant Cell. 2007 Jul;19(7):2278-92 - PubMed
  23. Plant J. 2013 Dec;76(6):1016-29 - PubMed
  24. Plant Physiol. 1984 Feb;74(2):247-51 - PubMed
  25. New Phytol. 2013 Jan;197(1):58-64 - PubMed
  26. J Exp Bot. 2013 Dec;64(18):5537-51 - PubMed
  27. J Biol Chem. 2013 Apr 5;288(14 ):10132-43 - PubMed
  28. BMC Plant Biol. 2014 Apr 03;14 :90 - PubMed
  29. Plant J. 1997 Nov;12(5):1189-96 - PubMed
  30. Plant J. 2013 Oct;76(1):128-37 - PubMed
  31. Plant J. 2011 Dec;68(6):941-53 - PubMed
  32. Plant Physiol. 2015 Jul;168(3):808-13 - PubMed
  33. Plant Physiol. 2014 May 7;165(3):991-1004 - PubMed
  34. Plant Physiol. 1995 Aug;108(4):1691-701 - PubMed
  35. J Biol Chem. 2001 Apr 6;276(14):11272-8 - PubMed
  36. J Biol Chem. 2010 Apr 30;285(18):13638-45 - PubMed
  37. PLoS One. 2016 Feb 26;11(2):e0150177 - PubMed
  38. Front Plant Sci. 2012 May 15;3:93 - PubMed
  39. Plant Physiol. 1997 Sep;115(1):87-92 - PubMed
  40. Plant Signal Behav. 2012 Feb;7(2):285-8 - PubMed
  41. J Biol Chem. 2014 Jul 25;289(30):20405-20420 - PubMed
  42. Plant Mol Biol. 2007 Jul;64(4):439-51 - PubMed
  43. Plant J. 2016 Jan;85(2):193-208 - PubMed
  44. Plant Cell. 2003 Jan;15(1):19-32 - PubMed

Publication Types