Display options
Share it on

Front Plant Sci. 2016 Jun 17;7:881. doi: 10.3389/fpls.2016.00881. eCollection 2016.

A Modified Reverse One-Hybrid Screen Identifies Transcriptional Activation Domains in PHYTOCHROME-INTERACTING FACTOR 3.

Frontiers in plant science

Jutta C Dalton, Ulrike Bätz, Jason Liu, Gemma L Curie, Peter H Quail

Affiliations

  1. Peter H. Quail Lab, Plant Gene and Expression Center, Department of Plant and Microbial Biology, University of California Berkeley Albany, CA, USA.

PMID: 27379152 PMCID: PMC4911399 DOI: 10.3389/fpls.2016.00881

Abstract

Transcriptional activation domains (TADs) are difficult to predict and identify, since they are not conserved and have little consensus. Here, we describe a yeast-based screening method that is able to identify individual amino acid residues involved in transcriptional activation in a high throughput manner. A plant transcriptional activator, PIF3 (phytochrome interacting factor 3), was fused to the yeast GAL4-DNA-binding Domain (BD), driving expression of the URA3 (Orotidine 5'-phosphate decarboxylase) reporter, and used for negative selection on 5-fluroorotic acid (5FOA). Randomly mutagenized variants of PIF3 were then selected for a loss or reduction in transcriptional activation activity by survival on FOA. In the process, we developed a strategy to eliminate false positives from negative selection that can be used for both reverse-1- and 2-hybrid screens. With this method we were able to identify two distinct regions in PIF3 with transcriptional activation activity, both of which are functionally conserved in PIF1, PIF4, and PIF5. Both are collectively necessary for full PIF3 transcriptional activity, but neither is sufficient to induce transcription autonomously. We also found that the TAD appear to overlap physically with other PIF3 functions, such as phyB binding activity and consequent phosphorylation. Our protocol should provide a valuable tool for identifying, analyzing and characterizing novel TADs in eukaryotic transcription factors, and thus potentially contribute to the unraveling of the mechanism underlying transcriptional activation.

Keywords: PHYTOCHROME INTERACTING FACTOR; light signaling; loss of function screens; phytochrome; transcriptional activation; yeast-one hybrid

References

  1. Mol Cell Biol. 2010 May;30(10):2376-90 - PubMed
  2. Nucleic Acids Res. 2006 Feb 07;34(3):955-67 - PubMed
  3. Nucleic Acids Res. 1997 Jan 15;25(2):451-2 - PubMed
  4. Plant Cell. 2013 Apr;25(4):1258-73 - PubMed
  5. Science. 1991 Jan 4;251(4989):87-90 - PubMed
  6. Mol Cell Biol. 2000 Apr;20(8):2774-82 - PubMed
  7. Proc Natl Acad Sci U S A. 1993 Feb 1;90(3):883-7 - PubMed
  8. Cell. 1986 Sep 12;46(6):885-94 - PubMed
  9. Nat Struct Mol Biol. 2011 Apr;18(4):404-9 - PubMed
  10. Plant J. 1996 Nov;10(5):859-68 - PubMed
  11. Science. 2014 Jun 6;344(6188):1160-4 - PubMed
  12. Nat Rev Mol Cell Biol. 2015 Mar;16(3):129-43 - PubMed
  13. Proc Natl Acad Sci U S A. 2001 Jul 31;98(16):9437-42 - PubMed
  14. Nature. 1988 Oct 6;335(6190):563-4 - PubMed
  15. Nucleic Acids Res. 1994 Sep 25;22(19):3983-9 - PubMed
  16. Nat Biotechnol. 2002 Oct;20(10):1041-4 - PubMed
  17. Plant Cell Physiol. 2001 Aug;42(8):813-22 - PubMed
  18. PLoS Genet. 2009 Jan;5(1):e1000352 - PubMed
  19. Plant Cell. 2004 Nov;16(11):3033-44 - PubMed
  20. Nat Rev Genet. 2010 Jun;11(6):426-37 - PubMed
  21. Curr Biol. 2008 Dec 9;18(23 ):1815-23 - PubMed
  22. Mol Cell Biol. 1994 Nov;14(11):7226-34 - PubMed
  23. Biochemistry. 2009 Feb 17;48(6):1244-55 - PubMed
  24. Nat Protoc. 2007;2(1):31-4 - PubMed
  25. Cell. 1987 Mar 13;48(5):847-53 - PubMed
  26. Science. 2004 Sep 24;305(5692):1937-41 - PubMed
  27. Mol Cell. 2011 Dec 23;44(6):942-53 - PubMed
  28. PLoS Genet. 2013;9(1):e1003244 - PubMed
  29. Plant Cell. 1999 Aug;11(8):1445-56 - PubMed
  30. Plant J. 2003 Sep;35(5):660-4 - PubMed
  31. Mol Cell Biol. 1995 Mar;15(3):1220-33 - PubMed
  32. Genome Res. 1999 Nov;9(11):1128-34 - PubMed
  33. Nature. 1999 Aug 19;400(6746):781-4 - PubMed
  34. Plant Mol Biol. 2010 Apr;72(6):585-95 - PubMed
  35. Science. 2000 May 5;288(5467):859-63 - PubMed
  36. Plant J. 2012 Jun;70(5):855-65 - PubMed
  37. Science. 1989 Jul 28;245(4916):371-8 - PubMed
  38. Plant Biotechnol J. 2013 Aug;11(6):671-80 - PubMed
  39. Nature. 2008 Jan 24;451(7177):480-4 - PubMed
  40. J Biol Chem. 1999 Oct 8;274(41):29211-9 - PubMed
  41. Cell. 1998 Nov 25;95(5):657-67 - PubMed
  42. Proc Natl Acad Sci U S A. 2008 Feb 12;105(6):2232-7 - PubMed
  43. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10315-20 - PubMed
  44. Proc Natl Acad Sci U S A. 2014 Aug 26;111(34):E3506-13 - PubMed
  45. Plant Cell. 1993 Jan;5(1):39-48 - PubMed
  46. Genomics. 2007 Jun;89(6):756-68 - PubMed
  47. Plant Cell. 2003 Aug;15(8):1749-70 - PubMed
  48. Nat Struct Mol Biol. 2011 Apr;18(4):410-5 - PubMed
  49. PLoS One. 2015 Aug 11;10(8):e0134709 - PubMed
  50. Genome Biol. 2009;10(6):R62 - PubMed
  51. Nature. 1988 Aug 25;334(6184):721-4 - PubMed
  52. Plant Cell. 2009 Nov;21(11):3535-53 - PubMed
  53. Mol Cell Biol. 1997 Jan;17(1):115-22 - PubMed
  54. Nature. 1988 May 19;333(6170):210-2 - PubMed
  55. Mol Gen Genet. 1996 May 23;251(2):236-44 - PubMed
  56. Plant Cell. 2013 Jul;25(7):2679-98 - PubMed
  57. EMBO J. 1996 Aug 1;15(15):3951-63 - PubMed

Publication Types

Grant support