Display options
Share it on

Int Sch Res Notices. 2014 Jul 16;2014:517126. doi: 10.1155/2014/517126. eCollection 2014.

Nitrite as Direct S-Nitrosylating Agent of Kir2.1 Channels.

International scholarly research notices

Gabriella Montesanti, Maria Laura Parisella, Giusi Garofalo, Daniela Pellegrino

Affiliations

  1. Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy.

PMID: 27379296 PMCID: PMC4897243 DOI: 10.1155/2014/517126

Abstract

Nitrite, a physiological nitric oxide (NO) storage form and an alternative way for NO generation, affects numerous biological processes through NO-dependent and independent pathways, including the S-nitrosylation of thiol-containing proteins. Mechanisms underlying these phenomena are not fully understood. The purpose of this study was to analyse in the rat heart (as prototype of mammalian heart) whether nitrite affects S-nitrosylation of cardiac proteins and the potential targets for S-nitrosylation. Rat hearts, perfused according to Langendorff, were exposed to nitrite. By Biotin Switch Method, we showed that nitrite treatment increased the degree of S-nitrosylation of a broad range of membrane proteins. Further analysis, conducted on subfractioned proteins, allowed us to identify a high level of nitrosylation in a small range of plasmalemmal proteins characterized by using an anti-Kir2.1 rabbit polyclonal antibody. We also verified that this effect of nitrite is preserved in the presence of the NO scavenger PTIO (2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl 3-oxide). Our results suggest, for the first time, that nitrite represents a direct S-nitrosylating agent in cardiac tissues and that inward-rectifier potassium ion channels (Kir2.1) are one of the targets. These observations are of relevance since they support the growing evidence that nitrite is not only a NO reserve but also a direct modulator of important functional cardiac proteins.

References

  1. Nat Rev Drug Discov. 2008 Feb;7(2):156-67 - PubMed
  2. Nat Med. 2013 Jun;19(6):753-9 - PubMed
  3. Proc Natl Acad Sci U S A. 2004 Sep 14;101(37):13683-8 - PubMed
  4. Biol Pharm Bull. 2008 Aug;31(8):1536-40 - PubMed
  5. J Pharmacol Exp Ther. 2006 Jul;318(1):336-44 - PubMed
  6. Nat Rev Mol Cell Biol. 2005 Feb;6(2):150-66 - PubMed
  7. Sci STKE. 2001 Jun 12;2001(86):pl1 - PubMed
  8. Clin Exp Pharmacol Physiol. 2000 Apr;27(4):313-9 - PubMed
  9. J Mol Cell Cardiol. 2001 Apr;33(4):625-38 - PubMed
  10. J Clin Invest. 2005 May;115(5):1232-40 - PubMed
  11. J Cardiovasc Pharmacol. 2009 Sep;54(3):188-95 - PubMed
  12. J Mol Cell Cardiol. 2014 Aug;73:18-25 - PubMed
  13. Nat Med. 2003 Dec;9(12):1498-505 - PubMed
  14. Free Radic Biol Med. 2009 Jan 15;46(2):119-26 - PubMed
  15. Cardiovasc Res. 2009 Jul 15;83(2):195-203 - PubMed
  16. Circulation. 2009 Oct 6;120(14):1345-54 - PubMed
  17. Circ Res. 2009 Aug 14;105(4):383-92 - PubMed
  18. Science. 2008 May 23;320(5879):1050-4 - PubMed
  19. Trends Cardiovasc Med. 2008 Jul;18(5):163-72 - PubMed
  20. J Exp Med. 2007 Sep 3;204(9):2089-102 - PubMed
  21. Proc Biol Sci. 2009 Nov 22;276(1675):4043-52 - PubMed
  22. Biochim Biophys Acta. 2009 Jul;1787(7):818-27 - PubMed
  23. Nat Chem Biol. 2005 Oct;1(5):290-7 - PubMed
  24. Antioxid Redox Signal. 2013 Jan 20;18(3):270-87 - PubMed
  25. Heart Rhythm. 2005 Mar;2(3):316-24 - PubMed
  26. J Mol Cell Cardiol. 2007 Apr;42(4):812-25 - PubMed
  27. Circ Res. 2007 Nov 26;101(11):1155-63 - PubMed
  28. Trends Mol Med. 2009 Sep;15(9):391-404 - PubMed
  29. J Mol Med (Berl). 2012 Mar;90(3):233-44 - PubMed

Publication Types