Display options
Share it on

Nat Chem. 2016 Aug;8(8):743-52. doi: 10.1038/nchem.2526. Epub 2016 May 30.

In situ real-time imaging of self-sorted supramolecular nanofibres.

Nature chemistry

Shoji Onogi, Hajime Shigemitsu, Tatsuyuki Yoshii, Tatsuya Tanida, Masato Ikeda, Ryou Kubota, Itaru Hamachi

Affiliations

  1. Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
  2. Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
  3. Department of Biomolecular Science, Graduate School of Engineering, Gifu University, Gifu 501-1193, Japan.
  4. United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, Gifu 501-1193, Japan.
  5. Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency (JST), 5 Sanbancho, Chiyoda-ku, Tokyo 102-0075, Japan.

PMID: 27442279 DOI: 10.1038/nchem.2526

Abstract

Self-sorted supramolecular nanofibres-a multicomponent system that consists of several types of fibre, each composed of distinct building units-play a crucial role in complex, well-organized systems with sophisticated functions, such as living cells. Designing and controlling self-sorting events in synthetic materials and understanding their structures and dynamics in detail are important elements in developing functional artificial systems. Here, we describe the in situ real-time imaging of self-sorted supramolecular nanofibre hydrogels consisting of a peptide gelator and an amphiphilic phosphate. The use of appropriate fluorescent probes enabled the visualization of self-sorted fibres entangled in two and three dimensions through confocal laser scanning microscopy and super-resolution imaging, with 80 nm resolution. In situ time-lapse imaging showed that the two types of fibre have different formation rates and that their respective physicochemical properties remain intact in the gel. Moreover, we directly visualized stochastic non-synchronous fibre formation and observed a cooperative mechanism.

References

  1. Nat Commun. 2015 Feb 20;6:6234 - PubMed
  2. N Engl J Med. 2004 Nov 11;351(20):2087-100 - PubMed
  3. Nat Chem. 2014 Jun;6(6):511-8 - PubMed
  4. Science. 2012 Feb 17;335(6070):813-7 - PubMed
  5. J Am Chem Soc. 2012 Aug 8;134(31):12908-11 - PubMed
  6. Chem Asian J. 2011 Sep 5;6(9):2368-75 - PubMed
  7. J Am Chem Soc. 2005 Dec 14;127(49):17385-92 - PubMed
  8. Adv Mater. 2011 Jul 5;23(25):2819-22 - PubMed
  9. Chemistry. 2010 Sep 3;16(33):10084-93 - PubMed
  10. J Am Chem Soc. 2011 Feb 16;133(6):1670-3 - PubMed
  11. Cytometry A. 2010 Aug;77(8):733-42 - PubMed
  12. Nat Mater. 2004 Jan;3(1):58-64 - PubMed
  13. Chemistry. 2008;14(36):11343-57 - PubMed
  14. Angew Chem Int Ed Engl. 2015 Jan 12;54(3):946-50 - PubMed
  15. Chem Rev. 2011 Sep 14;111(9):5784-814 - PubMed
  16. Chem Soc Rev. 2013 Aug 21;42(16):6697-722 - PubMed
  17. J Am Chem Soc. 2002 Sep 18;124(37):10954-5 - PubMed
  18. Nat Chem. 2015 Oct;7(10):848-52 - PubMed
  19. Science. 2004 Feb 27;303(5662):1352-5 - PubMed
  20. Science. 2015 Sep 4;349(6252):1075-9 - PubMed
  21. J Am Chem Soc. 2003 Nov 26;125(47):14252-3 - PubMed
  22. Opt Lett. 1994 Jun 1;19(11):780-2 - PubMed
  23. Nat Commun. 2015 May 11;6:7009 - PubMed
  24. Nat Commun. 2012;3:1033 - PubMed
  25. Am J Physiol Cell Physiol. 2011 Apr;300(4):C723-42 - PubMed
  26. Small. 2014 Mar 12;10 (5):973-9 - PubMed
  27. Nanoscale. 2014 Nov 21;6(22):13719-25 - PubMed
  28. Biophys J. 1981 Mar;33(3):435-54 - PubMed
  29. J Am Chem Soc. 2010 May 12;132(18):6306-8 - PubMed
  30. Chemistry. 2007;13(8):2180-8 - PubMed
  31. Nat Commun. 2013;4:1480 - PubMed
  32. Chem Soc Rev. 2015 Feb 7;44(3):779-89 - PubMed
  33. J Am Chem Soc. 2011 Aug 24;133(33):12987-9 - PubMed
  34. Science. 2011 Oct 21;334(6054):340-3 - PubMed
  35. Nat Commun. 2010 May 17;1:20 - PubMed
  36. J Am Chem Soc. 2009 Apr 22;131(15):5580-5 - PubMed
  37. Biophys J. 2006 Dec 15;91(12):4611-22 - PubMed
  38. Science. 1998 Jan 23;279(5350):514-9 - PubMed
  39. Chem Commun (Camb). 2015 Mar 28;51(25):5170-80 - PubMed
  40. Nat Chem. 2016 Jan;8(1):10-5 - PubMed
  41. Chem Soc Rev. 2014;43(20):6881-93 - PubMed
  42. Chemistry. 2010 Jan 4;16(1):362-7 - PubMed
  43. Science. 2014 May 2;344(6183):491-5 - PubMed

Publication Types