Display options
Share it on

Nat Commun. 2016 Jul 14;7:12206. doi: 10.1038/ncomms12206.

Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes.

Nature communications

Linfeng Fei, Shuijin Lei, Wei-Bing Zhang, Wei Lu, Ziyuan Lin, Chi Hang Lam, Yang Chai, Yu Wang

Affiliations

  1. Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong, China.
  2. School of Materials Science and Engineering, Nanchang University, Nanchang, Jiangxi 330031, China.
  3. School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410004, China.

PMID: 27412892 PMCID: PMC4947173 DOI: 10.1038/ncomms12206

Abstract

A microscopic understanding of the growth mechanism of two-dimensional materials is of particular importance for controllable synthesis of functional nanostructures. Because of the lack of direct and insightful observations, how to control the orientation and the size of two-dimensional material grains is still under debate. Here we discern distinct formation stages for MoS2 flakes from the thermolysis of ammonium thiomolybdates using in situ transmission electron microscopy. In the initial stage (400 °C), vertically aligned MoS2 structures grow in a layer-by-layer mode. With the increasing temperature of up to 780 °C, the orientation of MoS2 structures becomes horizontal. When the growth temperature reaches 850 °C, the crystalline size of MoS2 increases by merging adjacent flakes. Our study shows direct observations of MoS2 growth as the temperature evolves, and sheds light on the controllable orientation and grain size of two-dimensional materials.

References

  1. Science. 2007 Jul 6;317(5834):100-2 - PubMed
  2. Phys Rev B Condens Matter. 1994 Dec 15;50(24):17953-17979 - PubMed
  3. Chem Commun (Camb). 2014 Jan 25;50(7):826-8 - PubMed
  4. Nat Mater. 2013 Aug;12(8):754-9 - PubMed
  5. Phys Rev Lett. 1996 Oct 28;77(18):3865-3868 - PubMed
  6. Chem Soc Rev. 2015 May 7;44(9):2681-701 - PubMed
  7. Nat Nanotechnol. 2013 Jul;8(7):497-501 - PubMed
  8. Adv Mater. 2014 Jul 23;26(28):4838-44 - PubMed
  9. Nature. 2005 Sep 29;437(7059):664-70 - PubMed
  10. Nano Lett. 2013 Mar 13;13(3):1341-7 - PubMed
  11. Proc Natl Acad Sci U S A. 2013 Dec 3;110(49):19701-6 - PubMed
  12. Nature. 2014 Oct 23;514(7523):470-4 - PubMed
  13. J Phys Chem B. 2006 Jun 1;110(21):10209-12 - PubMed
  14. ACS Nano. 2010 May 25;4(5):2695-700 - PubMed
  15. Science. 2014 Sep 5;345(6201):1158-62 - PubMed
  16. ACS Nano. 2013 Jun 25;7(6):4879-91 - PubMed
  17. Chem Soc Rev. 2013 Mar 7;42(5):1934-46 - PubMed
  18. Adv Mater. 2015 Feb 4;27(5):935-9 - PubMed
  19. Science. 2014 Jun 27;344(6191):1489-92 - PubMed
  20. Nat Commun. 2013;4:2642 - PubMed
  21. Science. 2014 May 9;344(6184):623-6 - PubMed
  22. Chem Soc Rev. 2015 May 7;44(9):2664-80 - PubMed
  23. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  24. Science. 2015 Jul 31;349(6247):aaa6760 - PubMed
  25. Nat Nanotechnol. 2012 Nov;7(11):699-712 - PubMed
  26. Nanoscale. 2015 May 21;7(19):8695-700 - PubMed
  27. Science. 2014 May 2;344(6183):488-90 - PubMed
  28. Science. 2012 Feb 10;335(6069):698-702 - PubMed
  29. Nano Lett. 2014 Dec 10;14(12):6842-9 - PubMed
  30. Nano Lett. 2012 Jun 13;12(6):2784-91 - PubMed
  31. Angew Chem Int Ed Engl. 2015 Apr 7;54(15):4651-6 - PubMed
  32. Sci Rep. 2015 Dec 21;5:18596 - PubMed
  33. ACS Nano. 2015 May 26;9(5):4675-85 - PubMed
  34. Nano Lett. 2013;13(12):6222-7 - PubMed
  35. Nat Nanotechnol. 2015 Apr;10(4):313-8 - PubMed
  36. Nat Nanotechnol. 2014 Oct;9(10):780-93 - PubMed
  37. Nat Commun. 2013;4:1776 - PubMed
  38. Adv Mater. 2013 Feb 6;25(5):756-60 - PubMed
  39. Science. 2012 May 25;336(6084):1011-4 - PubMed
  40. Nano Lett. 2012 Mar 14;12(3):1538-44 - PubMed
  41. Nat Chem. 2013 Apr;5(4):263-75 - PubMed
  42. Phys Rev B Condens Matter. 1996 Oct 15;54(16):11169-11186 - PubMed
  43. Adv Mater. 2012 May 2;24(17):2320-5 - PubMed
  44. Science. 2012 May 25;336(6084):1014-8 - PubMed
  45. Nano Lett. 2013 Feb 13;13(2):668-73 - PubMed

Publication Types