Display options
Share it on

Sci Rep. 2016 Jun 27;6:28738. doi: 10.1038/srep28738.

3D coaxial out-of-plane metallic antennas for filtering and multi-spectral imaging in the infrared range.

Scientific reports

Andrea Jacassi, Angelo Bozzola, Pierfrancesco Zilio, Francesco Tantussi, Francesco De Angelis

Affiliations

  1. Istituto Italiano di Tecnologia-via Morego, 30, I-16163 Genova, Italy.
  2. Università degli Studi di Genova, via Balbi, 5, I-16126, Genova, Italy.

PMID: 27345517 PMCID: PMC4921826 DOI: 10.1038/srep28738

Abstract

We fabricated and investigated a new configuration of 3D coaxial metallic antennas working in the infrared which combines the strong lateral light scattering of vertical plasmonic structures with the selective spectral transmission of 2D arrays of coaxial apertures. The coaxial structures are fabricated with a top-down method based on a template of hollow 3D antennas. Each antenna has a multilayer radial structure consisting of dielectric and metallic materials not achievable in a 2D configuration. A planar metallic layer is inserted normally to the antennas. The outer dielectric shell of the antenna defines a nanometric gap between the horizontal plane and the vertical walls. Thanks to this aperture, light can tunnel to the other side of the plane, and be transmitted to the far field in a set of resonances. These are investigated with finite-elements electromagnetic calculations and with Fourier-transform infrared spectroscopy measurements. The spectral position of the resonances can be tuned by changing the lattice period and/or the antenna length. Thanks to the strong scattering provided by the 3D geometry, the transmission peaks possess a high signal-to-noise ratio even when the illuminated area is less than 2 × 2 times the operation wavelength. This opens new possibilities for multispectral imaging in the IR with wavelength-scale spatial resolution.

References

  1. Microsc Res Tech. 2010 Oct;73(10):991-5 - PubMed
  2. Nano Lett. 2011 Mar 9;11(3):1201-7 - PubMed
  3. Nano Lett. 2013 Aug 14;13(8):3553-8 - PubMed
  4. Phys Rev Lett. 2005 Jan 28;94(3):033902 - PubMed
  5. Adv Mater. 2014 Jun 25;26(24):4179-83 - PubMed
  6. Small. 2015 Sep;11(36):4632-7 - PubMed
  7. Sci Rep. 2015 Nov 10;5:16436 - PubMed
  8. Nano Lett. 2012 Aug 8;12(8):4349-54 - PubMed
  9. Adv Mater. 2015 Nov 25;27(44):7145-9 - PubMed
  10. Nanoscale. 2015 Apr 21;7(15):6409-19 - PubMed
  11. Opt Lett. 2011 Apr 15;36(8):1440-2 - PubMed
  12. Nano Lett. 2015 Aug 12;15(8):5200-7 - PubMed
  13. Nano Lett. 2012 Nov 14;12(11):5581-6 - PubMed
  14. Nano Lett. 2016 Feb 10;16(2):1502-8 - PubMed
  15. ACS Nano. 2013 Nov 26;7(11):10038-47 - PubMed
  16. Opt Express. 2009 Jan 5;17(1):293-303 - PubMed
  17. Nano Lett. 2014 Jun 11;14(6):3166-71 - PubMed
  18. Sci Rep. 2014 Sep 22;4:6435 - PubMed
  19. Nanoscale. 2015 Feb 28;7(8):3703-11 - PubMed
  20. Nat Mater. 2010 May;9(5):407-12 - PubMed

Publication Types