Display options
Share it on

Front Cell Neurosci. 2016 Jun 02;10:146. doi: 10.3389/fncel.2016.00146. eCollection 2016.

Reactive Oxygen Species Derived from NOX3 and NOX5 Drive Differentiation of Human Oligodendrocytes.

Frontiers in cellular neuroscience

Roberta Accetta, Simona Damiano, Annalisa Morano, Paolo Mondola, Roberto Paternò, Enrico V Avvedimento, Mariarosaria Santillo

Affiliations

  1. Dipartimento di Medicina Clinica e Chirurgia, Università degli Studi di Napoli Federico II Naples, Italy.
  2. Laboratori di Ricerca Preclinica e Traslazionale, Istituto di Ricovero e Cura a Carattere Scientifico - Centro di Riferimento Oncologico della Basilicata Rionero in Vulture, Italy.
  3. Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II Naples, Italy.

PMID: 27313511 PMCID: PMC4889614 DOI: 10.3389/fncel.2016.00146

Abstract

Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1-4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation.

Keywords: NOX3; NOX5; differentiation; multiple sclerosis; oligodendrocyte; reactive oxygen species

References

  1. J Alzheimers Dis. 2006 Jul;9(2):167-81 - PubMed
  2. Prog Neuropsychopharmacol Biol Psychiatry. 2011 Apr 29;35(3):676-92 - PubMed
  3. PLoS One. 2012;7(4):e34405 - PubMed
  4. Free Radic Biol Med. 2009 Nov 1;47(9):1239-53 - PubMed
  5. Mol Cell Biol. 2006 Jan;26(1):140-54 - PubMed
  6. J Neurochem. 1999 Jan;72(1):139-47 - PubMed
  7. Free Radic Biol Med. 2012 Feb 15;52(4):725-34 - PubMed
  8. Nat Rev Mol Cell Biol. 2007 Oct;8(10):813-24 - PubMed
  9. Circ Res. 1992 Mar;70(3):593-9 - PubMed
  10. Int J Biochem Cell Biol. 2015 Mar;60:8-18 - PubMed
  11. Cell Physiol Biochem. 2001;11(4):173-86 - PubMed
  12. Proc Natl Acad Sci U S A. 2000 Aug 29;97(18):10032-7 - PubMed
  13. J Biol Chem. 2005 Jun 17;280(24):23328-39 - PubMed
  14. Semin Immunopathol. 2008 Jul;30(3):329-37 - PubMed
  15. Biochemistry. 2002 Jun 18;41(24):7743-50 - PubMed
  16. Cell Death Dis. 2012 Feb 02;3:e268 - PubMed
  17. J Neurochem. 1973 Apr;20(4):1029-35 - PubMed
  18. Physiol Rev. 2007 Jan;87(1):245-313 - PubMed
  19. J Neurochem. 2000 Apr;74(4):1409-17 - PubMed
  20. Physiol Rev. 2001 Apr;81(2):871-927 - PubMed
  21. N Engl J Med. 2006 Jun 22;354(25):2667-76 - PubMed
  22. Biochem Biophys Res Commun. 2002 Jul 19;295(3):603-9 - PubMed
  23. PLoS One. 2013;8(2):e54722 - PubMed
  24. Development. 2004 Sep;131(17):4131-42 - PubMed
  25. J Neurochem. 1988 Dec;51(6):1737-45 - PubMed
  26. J Biol Chem. 2011 Feb 11;286(6):4727-41 - PubMed
  27. J Biol Chem. 2001 Oct 5;276(40):37594-601 - PubMed
  28. Nat Rev Neurosci. 2008 Nov;9(11):839-55 - PubMed
  29. Curr Biol. 2003 Sep 16;13(18):R699-701 - PubMed
  30. Curr Opin Cell Biol. 2001 Dec;13(6):666-72 - PubMed
  31. Neurosci Bull. 2013 Apr;29(2):144-54 - PubMed
  32. EMBO Mol Med. 2013 Dec;5(12):1918-34 - PubMed
  33. J Neurochem. 1996 Sep;67(3):1014-22 - PubMed
  34. J Neurochem. 2004 Nov;91(3):613-22 - PubMed
  35. Cell. 2002 Apr 5;109(1):75-86 - PubMed
  36. Science. 2011 Sep 9;333(6048):1440-5 - PubMed
  37. Cell Mol Life Sci. 2012 Jan;69(2):215-21 - PubMed
  38. J Neurobiol. 1995 Feb;26(2):283-93 - PubMed
  39. Front Cell Neurosci. 2013 Dec 18;7:261 - PubMed
  40. J Neurosci. 2013 Jan 2;33(1):175-86 - PubMed
  41. J Neurosci Res. 1999 Jun 1;56(5):447-56 - PubMed
  42. J Neurosci Res. 2001 Oct 1;66(1):37-45 - PubMed
  43. Free Radic Res Commun. 1989;6(6):345-58 - PubMed
  44. Front Physiol. 2015 Jul 07;6:194 - PubMed
  45. J Neurocytol. 2003 Jan;32(1):25-38 - PubMed
  46. Front Cell Neurosci. 2013 Dec 20;7:268 - PubMed
  47. Nat Rev Immunol. 2004 Mar;4(3):181-9 - PubMed
  48. J Biol Chem. 2009 Nov 27;284(48):33255-64 - PubMed
  49. Biochem Biophys Res Commun. 1989 Aug 15;162(3):940-4 - PubMed
  50. J Cell Physiol. 2009 Sep;220(3):562-8 - PubMed
  51. Exp Cell Res. 2005 Jun 10;306(2):343-8 - PubMed
  52. Biochem Biophys Res Commun. 1997 Dec 18;241(2):347-51 - PubMed
  53. Brain Res. 2016 May 1;1638(Pt B):209-20 - PubMed
  54. N Engl J Med. 2000 Sep 28;343(13):938-52 - PubMed
  55. Pharmacol Rev. 2011 Mar;63(1):218-42 - PubMed
  56. J Biol Chem. 2005 Oct 28;280(43):36474-82 - PubMed
  57. J Biol Chem. 2004 Oct 29;279(44):46065-72 - PubMed
  58. Neuroscience. 2006 May 12;139(2):733-40 - PubMed
  59. J Neurosci. 2011 Jan 19;31(3):843-50 - PubMed
  60. PLoS One. 2014 Jul 03;9(7):e100102 - PubMed
  61. J Biol Chem. 1990 Mar 15;265(8):4302-8 - PubMed

Publication Types