Display options
Share it on

Sci Rep. 2016 Jun 27;6:28485. doi: 10.1038/srep28485.

Visualising the strain distribution in suspended two-dimensional materials under local deformation.

Scientific reports

Kenan Elibol, Bernhard C Bayer, Stefan Hummel, Jani Kotakoski, Giacomo Argentero, Jannik C Meyer

Affiliations

  1. Faculty of Physics, University of Vienna, Boltzmanngasse 5, A-1090 Vienna, Austria.

PMID: 27346485 PMCID: PMC4921963 DOI: 10.1038/srep28485

Abstract

We demonstrate the use of combined simultaneous atomic force microscopy (AFM) and laterally resolved Raman spectroscopy to study the strain distribution around highly localised deformations in suspended two-dimensional materials. Using the AFM tip as a nanoindentation probe, we induce localised strain in suspended few-layer graphene, which we adopt as a two-dimensional membrane model system. Concurrently, we visualise the strain distribution under and around the AFM tip in situ using hyperspectral Raman mapping via the strain-dependent frequency shifts of the few-layer graphene's G and 2D Raman bands. Thereby we show how the contact of the nm-sized scanning probe tip results in a two-dimensional strain field with μm dimensions in the suspended membrane. Our combined AFM/Raman approach thus adds to the critically required instrumental toolbox towards nanoscale strain engineering of two-dimensional materials.

References

  1. Nano Lett. 2015 Aug 12;15(8):5330-5 - PubMed
  2. Nano Lett. 2013 Jun 12;13(6):2931-6 - PubMed
  3. Nat Commun. 2015 Sep 29;6:8429 - PubMed
  4. Nat Commun. 2015 Oct 20;6:8582 - PubMed
  5. Nat Commun. 2014 Apr 28;5:3720 - PubMed
  6. Nano Lett. 2013 May 8;13(5):1934-40 - PubMed
  7. Nano Lett. 2010 Jan;10(1):6-10 - PubMed
  8. Nat Commun. 2014 Sep 17;5:4962 - PubMed
  9. ACS Appl Mater Interfaces. 2014 Mar 26;6(6):4025-32 - PubMed
  10. Science. 2008 Jul 18;321(5887):385-8 - PubMed
  11. Phys Chem Chem Phys. 2014 Dec 21;16(47):25989-6003 - PubMed
  12. Nano Lett. 2009 Mar;9(3):964-8 - PubMed
  13. ACS Nano. 2016 Feb 23;10(2):1756-63 - PubMed
  14. ACS Nano. 2008 Nov 25;2(11):2301-5 - PubMed
  15. Science. 2012 Jun 22;336(6088):1557-61 - PubMed
  16. Science. 2014 Apr 18;344(6181):289-92 - PubMed
  17. Nano Lett. 2010 Feb 10;10(2):461-5 - PubMed
  18. Sci Rep. 2014 Apr 10;4:4630 - PubMed
  19. Nanoscale. 2012 May 21;4(10):3065-8 - PubMed
  20. Nano Lett. 2016 Jan 13;16(1):188-93 - PubMed
  21. Nano Lett. 2014 Mar 12;14(3):1234-41 - PubMed
  22. Nat Commun. 2015 Jun 19;6:7381 - PubMed
  23. Nat Commun. 2012;3:1024 - PubMed
  24. Nano Lett. 2009 Dec;9(12):4172-6 - PubMed
  25. Nat Nanotechnol. 2008 Apr;3(4):210-5 - PubMed
  26. Adv Mater. 2014 Feb;26(7):1081-6 - PubMed
  27. Annu Rev Chem Biomol Eng. 2015;6:121-40 - PubMed
  28. Nano Lett. 2012 Feb 8;12(2):617-21 - PubMed
  29. Nanotechnology. 2015 May 1;26(17):175702 - PubMed
  30. Nano Lett. 2014 Sep 10;14(9):5044-51 - PubMed
  31. Nat Nanotechnol. 2015 Feb;10(2):151-5 - PubMed
  32. Science. 2007 Jan 26;315(5811):490-3 - PubMed
  33. Nano Lett. 2008 Mar;8(3):902-7 - PubMed
  34. Nano Lett. 2008 May;8(5):1399-403 - PubMed
  35. Nano Lett. 2008 Aug;8(8):2458-62 - PubMed
  36. Nanoscale. 2014 Jun 7;6(11):6030-6 - PubMed
  37. Nat Nanotechnol. 2013 Dec;8(12):923-7 - PubMed
  38. ACS Nano. 2011 Mar 22;5(3):2231-9 - PubMed
  39. Nano Lett. 2007 Sep;7(9):2645-9 - PubMed
  40. Small. 2009 Nov;5(21):2397-402 - PubMed
  41. J Am Chem Soc. 2015 Nov 18;137(45):14358-66 - PubMed
  42. Nat Commun. 2015 Nov 06;6:8789 - PubMed
  43. Sci Rep. 2015 Nov 04;5:15061 - PubMed
  44. Phys Rev Lett. 2006 Nov 3;97(18):187401 - PubMed
  45. Nano Lett. 2013;13(11):5361-6 - PubMed
  46. ACS Nano. 2013 Aug 27;7(8):7287-94 - PubMed

Publication Types