Display options
Share it on

Neurophotonics. 2016 Oct;3(4):041806. doi: 10.1117/1.NPh.3.4.041806. Epub 2016 Jun 22.

Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation.

Neurophotonics

Marcel Andreas Lauterbach, Marc Guillon, Claire Desnos, Dany Khamsing, Zahra Jaffal, François Darchen, Valentina Emiliani

Affiliations

  1. University Paris Descartes , Wavefront-Engineering Microscopy Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France.
  2. University Paris Descartes , Synapic Trafficking Group, Neurophotonics Laboratory, CNRS UMR8250, Sorbonne Paris Cité, 45, rue des Saints Pères, Paris 75006, France.

PMID: 27413766 PMCID: PMC4916265 DOI: 10.1117/1.NPh.3.4.041806

Abstract

Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.

Keywords: STED; STED microscopy; computer generated holography; holography; photostimulation; plasticity; spine morphology; uncaging

References

  1. Biophys J. 2011 Sep 7;101(5):1277-84 - PubMed
  2. Nat Methods. 2015 Sep;12(9):827-30 - PubMed
  3. Nat Methods. 2012 Dec;9(12):1202-5 - PubMed
  4. Proc Natl Acad Sci U S A. 2008 Dec 2;105(48):18982-7 - PubMed
  5. Science. 2008 Apr 11;320(5873):246-9 - PubMed
  6. Annu Rev Neurosci. 2007;30:79-97 - PubMed
  7. Front Neuroanat. 2014 May 07;8:29 - PubMed
  8. Neuron. 1998 Sep;21(3):545-59 - PubMed
  9. Biol Cell. 2013 Oct;105(10):443-64 - PubMed
  10. Proc Natl Acad Sci U S A. 2011 Dec 6;108(49):19504-9 - PubMed
  11. Nature. 2009 Apr 23;458(7241):1025-9 - PubMed
  12. Opt Lett. 1999 May 1;24(9):608-10 - PubMed
  13. J Cell Biol. 1986 Jul;103(1):171-87 - PubMed
  14. J Neurosci. 2014 Apr 30;34(18):6405-12 - PubMed
  15. J Neural Eng. 2011 Aug;8(4):046002 - PubMed
  16. Opt Express. 2008 Dec 22;16(26):22039-47 - PubMed
  17. Nature. 2004 Jun 17;429(6993):761-6 - PubMed
  18. Circ Res. 2012 Aug 3;111(4):402-14 - PubMed
  19. Trends Neurosci. 1989 Sep;12(9):333-5, 340-1 - PubMed
  20. Nat Neurosci. 2001 Nov;4(11):1086-92 - PubMed
  21. Cell Rep. 2015 Jan 13;10(2):162-9 - PubMed
  22. Neuron. 2011 Jul 14;71(1):9-34 - PubMed
  23. Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16665-70 - PubMed
  24. Science. 2007 May 25;316(5828):1153-8 - PubMed
  25. Annu Rev Neurosci. 2013 Jul 8;36:1-24 - PubMed
  26. Nat Neurosci. 2014 May;17 (5):678-85 - PubMed
  27. J Neurosci Methods. 2009 May 30;180(1):9-21 - PubMed
  28. Neuron. 2009 Aug 27;63(4):429-37 - PubMed
  29. Langmuir. 2010 Sep 21;26(18):14400-4 - PubMed
  30. Opt Lett. 1994 Jun 1;19(11):780-2 - PubMed
  31. J Neurosci. 2015 Oct 14;35(41):13917-26 - PubMed
  32. Phys Rev Lett. 2005 Apr 15;94(14):143903 - PubMed
  33. Biophys J. 2014 Jan 7;106(1):L01-3 - PubMed
  34. Front Cell Neurosci. 2014 May 13;8:127 - PubMed
  35. Nature. 2015 Sep 17;525(7569):333-8 - PubMed
  36. J Neurosci. 2007 Aug 1;27(31):8344-57 - PubMed
  37. Nat Rev Neurosci. 2004 Jan;5(1):24-34 - PubMed
  38. Nat Methods. 2008 Sep;5(9):821-7 - PubMed
  39. Nature. 2015 Jul 30;523(7562):592-6 - PubMed
  40. Sci Rep. 2013;3:2050 - PubMed
  41. Nature. 2007 Dec 20;450(7173):1195-200 - PubMed
  42. Science. 2012 Feb 3;335(6068):551 - PubMed
  43. Curr Opin Neurobiol. 2012 Feb;22(1):128-37 - PubMed
  44. Neuron. 2004 Dec 2;44(5):759-67 - PubMed
  45. Nature. 2011 Jun 2;474(7349):100-4 - PubMed
  46. Prog Brain Res. 2012;196:119-43 - PubMed
  47. Neuron. 2014 Dec 17;84(6):1157-69 - PubMed
  48. Neuron. 2011 Jan 13;69(1):132-46 - PubMed
  49. Science. 2002 Jun 28;296(5577):2395-8 - PubMed

Publication Types