Display options
Share it on

Conserv Physiol. 2016 Jan 13;4(1):cov059. doi: 10.1093/conphys/cov059. eCollection 2016.

Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes.

Conservation physiology

Andrij Z Horodysky, Steven J Cooke, John E Graves, Richard W Brill

Affiliations

  1. Department of Marine and Environmental Science, Hampton University, 100 East Queen Street, Hampton, VA 23668, USA.
  2. Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
  3. Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA.
  4. Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA; Behavioral Ecology Branch, James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Highlands, NJ 07732, USA.

PMID: 27382467 PMCID: PMC4922246 DOI: 10.1093/conphys/cov059

Abstract

Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental-applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management.

Keywords: Bycatch; Fry paradigm; cardiorespiratory; pelagic fishes; post-release survival

References

  1. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2014 Dec;200(12):997-1013 - PubMed
  2. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367(1596):1746-56 - PubMed
  3. Science. 2005 Oct 7;310(5745):104-6 - PubMed
  4. J Exp Biol. 2008 May;211(Pt 9):1504-11 - PubMed
  5. Physiol Biochem Zool. 2014 Jan-Feb;87(1):1-14 - PubMed
  6. J Morphol. 2010 Jan;271(1):36-49 - PubMed
  7. Nature. 1988 Jul 28;334(6180):348-50 - PubMed
  8. Nature. 1992 Jul 30;358(6385):410-2 - PubMed
  9. Science. 2015 Jun 12;348(6240):1255642 - PubMed
  10. Comp Biochem Physiol A Comp Physiol. 1985;81(1):49-53 - PubMed
  11. J Exp Biol. 2009 Feb;212(Pt 4):461-70 - PubMed
  12. J Exp Biol. 2012 Mar 15;215(Pt 6):892-902 - PubMed
  13. J Exp Biol. 2004 Feb;207(Pt 5):881-90 - PubMed
  14. Trends Ecol Evol. 2006 Jan;21(1):38-46 - PubMed
  15. Am J Physiol Regul Integr Comp Physiol. 2004 Feb;286(2):R398-404 - PubMed
  16. J Exp Biol. 2009 Mar;212(Pt 6):753-60 - PubMed
  17. N Z Vet J. 2006 Aug;54(4):161-72 - PubMed
  18. Am J Physiol. 1986 Mar;250(3 Pt 2):R452-8 - PubMed
  19. Science. 2001 Aug 17;293(5533):1310-4 - PubMed
  20. Philos Trans R Soc Lond B Biol Sci. 2012 Jun 19;367 (1596):1607-14 - PubMed
  21. Conserv Physiol. 2013 Mar 13;1(1):cot001 - PubMed
  22. Ecol Lett. 2009 Apr;12(4):334-50 - PubMed
  23. Comp Biochem Physiol A Mol Integr Physiol. 2012 Jun;162(2):121-9 - PubMed
  24. J Exp Biol. 2008 Nov;211(Pt 22):3601-12 - PubMed
  25. Curr Biol. 2005 Jan 11;15(1):55-8 - PubMed
  26. Proc Biol Sci. 2011 Jan 7;278(1702):18-27 - PubMed
  27. J Fish Biol. 2012 Apr;80(5):1870-94 - PubMed
  28. PLoS One. 2014 Oct 27;9(10):e109338 - PubMed
  29. Comp Biochem Physiol A Comp Physiol. 1985;81(3):643-6 - PubMed
  30. J Comp Physiol B. 1985;156(2):229-36 - PubMed
  31. J Comp Physiol B. 1992;162(2):131-43 - PubMed
  32. Science. 1993 Apr 9;260(5105):210-4 - PubMed
  33. Science. 2015 May 15;348(6236):786-9 - PubMed
  34. Conserv Physiol. 2014 Jul 08;2(1):cou024 - PubMed
  35. J Morphol. 2011 Nov;272(11):1353-64 - PubMed
  36. Proc Natl Acad Sci U S A. 2015 Jul 7;112(27):8350-5 - PubMed
  37. PLoS One. 2011;6(7):e21903 - PubMed
  38. Physiol Biochem Zool. 2009 May-Jun;82(3):280-90 - PubMed
  39. J Comp Physiol B. 2009 Apr;179(3):267-77 - PubMed
  40. Proc Biol Sci. 2015 Feb 7;282(1800):20141989 - PubMed
  41. J Exp Biol. 1994 Jul;192(1):13-31 - PubMed
  42. J Exp Biol. 2011 Apr 1;214(Pt 7):1068-76 - PubMed
  43. Comp Biochem Physiol A Comp Physiol. 1972 Oct 1;43(2):425-33 - PubMed
  44. Science. 2009 Jul 31;325(5940):578-85 - PubMed
  45. Comp Biochem Physiol A Mol Integr Physiol. 2007 Nov;148(3):664-73 - PubMed
  46. Integr Zool. 2015 Jan;10(1):38-64 - PubMed
  47. Philos Trans R Soc Lond B Biol Sci. 2007 Nov 29;362(1487):2031-41 - PubMed
  48. Proc Natl Acad Sci U S A. 2006 Feb 28;103(9):3171-5 - PubMed
  49. Philos Trans R Soc Lond B Biol Sci. 2000 Sep 29;355(1401):1253-6 - PubMed
  50. J Morphol. 1986 Nov;190(2):169-89 - PubMed
  51. Conserv Physiol. 2016 Feb 10;4(1):cov066 - PubMed
  52. Proc Natl Acad Sci U S A. 1966 Nov;56(5):1464-9 - PubMed
  53. Comp Biochem Physiol A Comp Physiol. 1986;84(3):565-71 - PubMed
  54. Science. 2008 May 2;320(5876):655-8 - PubMed
  55. Conserv Physiol. 2013 Apr 08;1(1):cot002 - PubMed
  56. Science. 1982 Jun 18;216(4552):1327-9 - PubMed
  57. J Exp Biol. 2010 Mar 15;213(6):881-93 - PubMed
  58. Comp Biochem Physiol. 1969 Jan;28(1):199-204 - PubMed
  59. J Exp Biol. 2010 May;213(Pt 10):1751-61 - PubMed

Publication Types