Display options
Share it on

PLoS Comput Biol. 2016 Jul 14;12(7):e1004928. doi: 10.1371/journal.pcbi.1004928. eCollection 2016 Jul.

Disease Surveillance on Complex Social Networks.

PLoS computational biology

Jose L Herrera, Ravi Srinivasan, John S Brownstein, Alison P Galvani, Lauren Ancel Meyers

Affiliations

  1. Department of Integrative Biology, The University of Texas at Austin, Austin, Texas, United States of America.
  2. Departamento de Cálculo, Escuela Básica de Ingeniería, Facultad de Ingeneiría, Universidad de Los Andes, Mérida, Venezuela.
  3. Applied Research Laboratories, The University of Texas at Austin, Austin, Texas, United States of America.
  4. Department of Statistics and Data Sciences, The University of Texas at Austin, Austin, Texas, United States of America.
  5. Department of Pediatrics, Harvard Medical School and Children's Hospital Informatics Program, Boston Children's Hospital, Boston, Massachusetts, United States of America.
  6. Center for Infectious Disease Modeling and Analysis, Yale School of Public Health, New Haven, Connecticut, United States of America.

PMID: 27415615 PMCID: PMC4944951 DOI: 10.1371/journal.pcbi.1004928

Abstract

As infectious disease surveillance systems expand to include digital, crowd-sourced, and social network data, public health agencies are gaining unprecedented access to high-resolution data and have an opportunity to selectively monitor informative individuals. Contact networks, which are the webs of interaction through which diseases spread, determine whether and when individuals become infected, and thus who might serve as early and accurate surveillance sensors. Here, we evaluate three strategies for selecting sensors-sampling the most connected, random, and friends of random individuals-in three complex social networks-a simple scale-free network, an empirical Venezuelan college student network, and an empirical Montreal wireless hotspot usage network. Across five different surveillance goals-early and accurate detection of epidemic emergence and peak, and general situational awareness-we find that the optimal choice of sensors depends on the public health goal, the underlying network and the reproduction number of the disease (R0). For diseases with a low R0, the most connected individuals provide the earliest and most accurate information about both the onset and peak of an outbreak. However, identifying network hubs is often impractical, and they can be misleading if monitored for general situational awareness, if the underlying network has significant community structure, or if R0 is high or unknown. Taking a theoretical approach, we also derive the optimal surveillance system for early outbreak detection but find that real-world identification of such sensors would be nearly impossible. By contrast, the friends-of-random strategy offers a more practical and robust alternative. It can be readily implemented without prior knowledge of the network, and by identifying sensors with higher than average, but not the highest, epidemiological risk, it provides reasonably early and accurate information.

References

  1. Science. 2013 Jun 14;340(6138):1272 - PubMed
  2. PLoS One. 2010 Sep 15;5(9):e12948 - PubMed
  3. Science. 1999 Oct 15;286(5439):509-12 - PubMed
  4. BMC Med. 2013 Feb 12;11:35 - PubMed
  5. Emerg Infect Dis. 2003 Feb;9(2):204-10 - PubMed
  6. PLoS One. 2013 May 30;8(5):e64323 - PubMed
  7. PLoS One. 2011 Apr 27;6(4):e18687 - PubMed
  8. Euro Surveill. 2009 Nov 05;14(44):null - PubMed
  9. Phys Rev Lett. 2009 Apr 24;102(16):160602 - PubMed
  10. PLoS Comput Biol. 2010 Apr 08;6(4):e1000736 - PubMed
  11. Nature. 2009 Feb 19;457(7232):1012-4 - PubMed
  12. Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Dec;64(6 Pt 2):066112 - PubMed
  13. J Med Internet Res. 2015 Jul 08;17(7):e169 - PubMed
  14. J Med Internet Res. 2012 Oct 04;14(5):e125 - PubMed
  15. PLoS One. 2013;8(2):e56176 - PubMed
  16. J Math Biol. 2008 Mar;56(3):293-310 - PubMed
  17. PLoS One. 2015 Sep 01;10(9):e0136497 - PubMed
  18. PLoS Med. 2008 Jul 8;5(7):e151 - PubMed
  19. Am J Epidemiol. 2005 Nov 15;162(10):1024-31 - PubMed
  20. Emerg Infect Dis. 2008 Nov;14(11):1819-21 - PubMed
  21. PLoS One. 2010 Nov 29;5(11):e14118 - PubMed
  22. BMC Med. 2013 Feb 12;11:36 - PubMed
  23. Netw Sci (Camb Univ Press). 2015 Sep 1;3(3):298-325 - PubMed
  24. Science. 2001 May 18;292(5520):1316-7 - PubMed
  25. Proc Biol Sci. 2006 Nov 7;273(1602):2743-8 - PubMed
  26. Comput Methods Programs Biomed. 2010 Oct;100(1):16-23 - PubMed
  27. N Engl J Med. 2009 May 21;360(21):2153-5, 2157 - PubMed
  28. Emerg Infect Dis. 2010 May;16(5):783-8 - PubMed
  29. Epidemiology. 2010 Nov;21(6):760-3 - PubMed
  30. Clin Infect Dis. 2009 Nov 15;49(10):1557-64 - PubMed
  31. J Infect Dis. 2006 Nov 1;194 Suppl 2:S82-91 - PubMed
  32. Phys Rev Lett. 2001 Apr 16;86(16):3682-5 - PubMed
  33. J R Soc Interface. 2012 Nov 7;9(76):2814-25 - PubMed
  34. PLoS One. 2013 Dec 09;8(12):e83672 - PubMed
  35. J Theor Biol. 2006 Jun 7;240(3):400-18 - PubMed
  36. Phys Rev Lett. 2001 Apr 2;86(14):3200-3 - PubMed
  37. J Am Med Inform Assoc. 2008 Mar-Apr;15(2):150-7 - PubMed
  38. Nature. 2000 Jul 27;406(6794):378-82 - PubMed
  39. J Theor Biol. 2012 Sep 21;309:176-84 - PubMed
  40. J Theor Biol. 2005 Jan 7;232(1):71-81 - PubMed
  41. Geospat Health. 2010 May;4(2):135-7 - PubMed
  42. PLoS Comput Biol. 2011 Jun;7(6):e1002042 - PubMed
  43. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Jul;66(1 Pt 2):016128 - PubMed
  44. Nature. 1998 Jun 4;393(6684):440-2 - PubMed
  45. PLoS Comput Biol. 2012;8(4):e1002472 - PubMed
  46. Euro Surveill. 2010 Jul 22;15(29):null - PubMed
  47. Hum Biol. 1952 Sep;24(3):201-33 - PubMed
  48. Phys Rev Lett. 2003 Dec 12;91(24):247901 - PubMed

MeSH terms

Publication Types

Grant support