Display options
Share it on

Front Neurosci. 2016 Jun 28;10:299. doi: 10.3389/fnins.2016.00299. eCollection 2016.

5-HT2A Gene Variants Moderate the Association between PTSD and Reduced Default Mode Network Connectivity.

Frontiers in neuroscience

Mark W Miller, Emily Sperbeck, Meghan E Robinson, Naomi Sadeh, Erika J Wolf, Jasmeet P Hayes, Mark Logue, Steven A Schichman, Angie Stone, William Milberg, Regina McGlinchey

Affiliations

  1. Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA.
  2. Department of Psychiatry, Boston University School of Medicine Boston, MA, USA.
  3. Neuroimaging Research for Veterans Center, VA Boston Healthcare SystemBoston, MA, USA; Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare SystemBoston, MA, USA; Department of Neurology, Boston University School of MedicineBoston, MA, USA.
  4. Behavioral Science Division, National Center for PTSD, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Boston University School of MedicineBoston, MA, USA; Biomedical Genetics, Boston University School of MedicineBoston, MA, USA; Department of Biostatistics, Boston University School of Public HealthBoston, MA, USA.
  5. Pharmacogenomics Analysis Laboratory, Research Service, Central Arkansas Veterans Healthcare System Little Rock, AR, USA.
  6. Geriatric Research Educational and Clinical Center and Translational Research Center for TBI and Stress Disorders, VA Boston Healthcare SystemBoston, MA, USA; Department of Psychiatry, Harvard Medical SchoolBoston, MA, USA.

PMID: 27445670 PMCID: PMC4923242 DOI: 10.3389/fnins.2016.00299

Abstract

The default mode network (DMN) has been used to study disruptions of functional connectivity in a wide variety of psychiatric and neurological conditions, including posttraumatic stress disorder (PTSD). Studies indicate that the serotonin system exerts a modulatory influence on DMN connectivity; however, no prior study has examined associations between serotonin receptor gene variants and DMN connectivity in either clinical or healthy samples. We examined serotonin receptor single nucleotide polymorphisms (SNPs), PTSD, and their interactions for association with DMN connectivity in 134 White non-Hispanic veterans. We began by analyzing candidate SNPs identified in prior meta-analyses of relevant psychiatric traits and found that rs7997012 (an HTR2A SNP), implicated previously in anti-depressant medication response in the Sequenced Treatment Alternatives for Depression study (STAR(*)D; McMahon et al., 2006), interacted with PTSD to predict reduced connectivity between the posterior cingulate cortex (PCC) and the right medial prefrontal cortex and right middle temporal gyrus (MTG). rs130058 (HTR1B) was associated with connectivity between the PCC and right angular gyrus. We then expanded our analysis to 99 HTR1B and HTR2A SNPs and found two HTR2A SNPs (rs977003 and rs7322347) that significantly moderated the association between PTSD severity and the PCC-right MTG component of the DMN after correcting for multiple testing. Finally, to obtain a more precise localization of the most significant SNP × PTSD interaction, we performed a whole cortex vertex-wise analysis of the rs977003 effect. This analysis revealed the locus of the pre-frontal effect to be in portions of the superior frontal gyrus, while the temporal lobe effect was centered in the middle and inferior temporal gyri. These findings point to the influence of HTR2A variants on DMN connectivity and advance knowledge of the role of 5-HT2A receptors in the neurobiology of PTSD.

Keywords: HTR1B; HTR2A; default mode network; functional connectivity; posttraumatic stress disorder; serotonin receptor

References

  1. Psychosom Med. 2012 Nov-Dec;74(9):904-11 - PubMed
  2. Hum Brain Mapp. 2014 Aug;35(8):3893-902 - PubMed
  3. Int J Neuropsychopharmacol. 2010 Jul;13(6):715-24 - PubMed
  4. Proc Natl Acad Sci U S A. 2012 Feb 7;109 (6):2138-43 - PubMed
  5. Nature. 2012 Nov 1;491(7422):56-65 - PubMed
  6. J Psychiatry Neurosci. 2010 May;35(3):177-84 - PubMed
  7. Transl Psychiatry. 2012 Apr 17;2:e103 - PubMed
  8. PLoS One. 2014 Mar 25;9(3):e92543 - PubMed
  9. Science. 2007 Jan 19;315(5810):393-5 - PubMed
  10. PLoS One. 2013 May 15;8(5):e64466 - PubMed
  11. Neuron. 2002 Jan 31;33(3):341-55 - PubMed
  12. Hum Brain Mapp. 2016 Feb;37(2):589-99 - PubMed
  13. PLoS One. 2013 Jun 27;8(6):e68355 - PubMed
  14. Arch Gen Psychiatry. 2005 Feb;62(2):146-52 - PubMed
  15. Prog Neuropsychopharmacol Biol Psychiatry. 2013 Aug 1;45:183-94 - PubMed
  16. Biol Psychiatry. 2008 May 1;63(9):852-7 - PubMed
  17. J Neurochem. 1996 Jun;66(6):2621-4 - PubMed
  18. J Hum Genet. 2009 Nov;54(11):629-33 - PubMed
  19. Mol Psychiatry. 2013 Jul;18(7):799-805 - PubMed
  20. J Comp Neurol. 1978 Aug 1;180(3):417-38 - PubMed
  21. Am J Psychiatry. 2007 Aug;164(8):1181-8 - PubMed
  22. Eur J Psychotraumatol. 2015 Mar 31;6:27313 - PubMed
  23. Mol Psychiatry. 2010 May;15(5):473-500 - PubMed
  24. Brain Res. 2009 Oct 13;1293:13-23 - PubMed
  25. PLoS One. 2015 Feb 06;10(2):e0117792 - PubMed
  26. J Affect Disord. 2014 Oct;168:430-8 - PubMed
  27. Eur Arch Psychiatry Clin Neurosci. 2013 Mar;263(2):105-18 - PubMed
  28. Neuroimage. 2015 Nov 15;122:440-50 - PubMed
  29. J Head Trauma Rehabil. 2014 Jan-Feb;29(1):89-98 - PubMed
  30. Prog Brain Res. 2005;150:205-17 - PubMed
  31. Depress Anxiety. 2016 Jul;33(7):592-605 - PubMed
  32. Hum Brain Mapp. 2003 Jan;18(1):30-41 - PubMed
  33. Cereb Cortex. 2009 Mar;19(3):524-36 - PubMed
  34. Hum Genet. 2014 Mar;133(3):357-65 - PubMed
  35. PLoS One. 2012;7(10):e46833 - PubMed
  36. Neuroimage. 2012 Aug 15;62(2):774-81 - PubMed
  37. Nat Neurosci. 2005 Jun;8(6):828-34 - PubMed
  38. Mol Neurobiol. 2013 Dec;48(3):841-53 - PubMed
  39. Brain. 2002 Aug;125(Pt 8):1808-14 - PubMed
  40. Brain Res. 2012 Nov 12;1484:50-6 - PubMed
  41. Neuron. 2010 Feb 25;65(4):550-62 - PubMed
  42. Am J Hum Genet. 2006 May;78(5):804-14 - PubMed
  43. Neurosci Biobehav Rev. 2009 Mar;33(3):279-96 - PubMed
  44. J Neurosci Res. 2013 May;91(5):623-33 - PubMed
  45. Hum Brain Mapp. 2015 Mar;36(3):911-22 - PubMed
  46. Neuroimage. 2012 Feb 1;59(3):2760-70 - PubMed
  47. J Psychiatr Res. 2015 Jan;60:1-13 - PubMed
  48. Proc Natl Acad Sci U S A. 2010 Jan 19;107(3):1223-8 - PubMed
  49. Neuroscientist. 2012 Jun;18(3):251-70 - PubMed
  50. Neuroimage Clin. 2012 Nov 07;2:17-24 - PubMed
  51. Acta Psychiatr Scand. 2010 Jan;121(1):33-40 - PubMed
  52. Psychiatry Res. 2011 Jan 30;185(1-2):20-6 - PubMed
  53. PLoS One. 2013;8(3):e58150 - PubMed
  54. Nat Rev Neurosci. 2001 Oct;2(10 ):685-94 - PubMed
  55. Am J Med Genet B Neuropsychiatr Genet. 2013 Mar;162B(2):169-76 - PubMed
  56. Hum Genet. 2009 Jul;126(1):51-90 - PubMed
  57. Mol Psychiatry. 2009 Jan;14(1):71-85 - PubMed
  58. Annu Rev Neurosci. 2015 Jul 8;38:433-47 - PubMed
  59. J Psychiatry Neurosci. 2009 May;34(3):187-94 - PubMed
  60. Biol Mood Anxiety Disord. 2012 May 18;2:9 - PubMed
  61. Mol Psychiatry. 2013 Jul;18(7):758-66 - PubMed
  62. Arch Gen Psychiatry. 2011 May;68(5):444-54 - PubMed
  63. Mol Psychiatry. 2004 Sep;9(9):879-89 - PubMed
  64. Ann N Y Acad Sci. 2008 Mar;1124:1-38 - PubMed
  65. Proc Natl Acad Sci U S A. 2012 Feb 14;109(7):2619-24 - PubMed
  66. Eur Neuropsychopharmacol. 2012 Apr;22(4):239-58 - PubMed
  67. Behav Neurosci. 2007 Aug;121(4):643-52 - PubMed
  68. J Cogn Neurosci. 2009 Mar;21(3):489-510 - PubMed
  69. Psychol Bull. 2013 May;139(3):519-35 - PubMed
  70. J Trauma Stress. 2013 Dec;26(6):710-7 - PubMed
  71. Hum Brain Mapp. 2015 Nov;36(11):4361-71 - PubMed
  72. Mol Psychiatry. 2016 May;21(5):665-79 - PubMed

Publication Types

Grant support