Display options
Share it on

Front Psychiatry. 2016 Jun 30;7:114. doi: 10.3389/fpsyt.2016.00114. eCollection 2016.

Abnormal Connectional Fingerprint in Schizophrenia: A Novel Network Analysis of Diffusion Tensor Imaging Data.

Frontiers in psychiatry

Sharmili Edwin Thanarajah, Cheol E Han, Anna Rotarska-Jagiela, Wolf Singer, Ralf Deichmann, Konrad Maurer, Marcus Kaiser, Peter J Uhlhaas

Affiliations

  1. Department of Neurology, University Hospital of Cologne, Cologne, Germany; Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany; Max-Planck Institute for Metabolism Research, Cologne, Germany.
  2. Department of Electronics and Information Engineering, Korea University, Sejong, South Korea; Department of Bio-Convergence Engineering, Korea University, Seoul, South Korea; Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea.
  3. Department of Neurophysiology, Max-Planck Institute for Brain Research , Frankfurt am Main , Germany.
  4. Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany; Ernst-Strüngmann Institut, Frankfurt am Main, Germany; Frankfurt Institute of Advanced Studies, Goethe University Frankfurt am Main, Frankfurt am Main, Germany.
  5. Brain Imaging Centre, Goethe University Frankfurt am Main , Frankfurt am Main , Germany.
  6. Department of Psychiatry, Psychosomatics and Psychotherapy, Goethe University Frankfurt am Main , Frankfurt am Main , Germany.
  7. Department of Brain and Cognitive Sciences, Seoul National University, Seoul, South Korea; Interdisciplinary Computing and Complex BioSystems (ICOS) Research, School of Computing Science, Newcastle University, Newcastle, UK; Institute of Neuroscience, Newcastle University, Newcastle, UK.
  8. Department of Neurophysiology, Max-Planck Institute for Brain Research, Frankfurt am Main, Germany; Institute of Neuroscience and Psychology, University of Glasgow, Glasgow, UK.

PMID: 27445870 PMCID: PMC4928135 DOI: 10.3389/fpsyt.2016.00114

Abstract

The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal-frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder.

Keywords: connectional fingerprint; diffusion tensor imaging; graph theory; neuroinformatics; schizophrenia

References

  1. J Neurosci. 2005 Sep 28;25(39):8854-66 - PubMed
  2. Cereb Cortex. 2007 Apr;17(4):816-25 - PubMed
  3. Psychiatry Res. 2014 Sep 30;223(3):202-9 - PubMed
  4. Arch Gen Psychiatry. 2003 May;60(5):443-56 - PubMed
  5. J Neurosci. 2009 Dec 16;29(50):15684-93 - PubMed
  6. Neuroimage. 2007 Jan 1;34(1):204-11 - PubMed
  7. Neuroimage. 2002 Oct;17(2):825-41 - PubMed
  8. Neuroimage. 2012 Feb 15;59(4):3784-804 - PubMed
  9. Brain Connect. 2013;3(2):160-76 - PubMed
  10. Biol Psychiatry. 2011 Jan 1;69(1):80-9 - PubMed
  11. Front Hum Neurosci. 2015 Nov 03;9:589 - PubMed
  12. Neuroimage. 2006 Nov 15;33(3):867-77 - PubMed
  13. Am J Psychiatry. 1992 Jul;149(7):890-7 - PubMed
  14. Psychiatry Res. 2013 Apr 30;206(2-3):223-31 - PubMed
  15. Dialogues Clin Neurosci. 2013 Sep;15(3):339-49 - PubMed
  16. Psychopathology. 1995;28(1):22-31 - PubMed
  17. J Neurosci. 2015 Jan 7;35(1):267-86 - PubMed
  18. Neuroimage. 2004;23 Suppl 1:S208-19 - PubMed
  19. Psychiatry Res. 2014 Aug 30;223(2):75-83 - PubMed
  20. Arch Gen Psychiatry. 2005 Oct;62(10):1071-80 - PubMed
  21. Hum Brain Mapp. 2012 Nov;33(11):2535-49 - PubMed
  22. Prog Neuropsychopharmacol Biol Psychiatry. 2014 Oct 3;54:83-91 - PubMed
  23. Nat Rev Neurosci. 2002 Aug;3(8):606-16 - PubMed
  24. Cereb Cortex. 2011 Nov;21(11):2578-88 - PubMed
  25. Schizophr Res. 2004 Jun 1;68(2-3):283-97 - PubMed
  26. Cortex. 2008 Sep;44(8):936-52 - PubMed
  27. Front Hum Neurosci. 2013 Sep 02;7:520 - PubMed
  28. Proc Natl Acad Sci U S A. 2009 Jan 27;106(4):1279-84 - PubMed
  29. Neuroreport. 2008 Sep 17;19(14):1391-5 - PubMed
  30. PLoS Comput Biol. 2009 May;5(5):e1000381 - PubMed
  31. Psychiatry Res. 2013 Dec 30;214(3):190-6 - PubMed
  32. Am J Psychiatry. 2005 Mar;162(3):429-32 - PubMed
  33. Neuroimage. 2012 Jan 16;59(2):1085-93 - PubMed
  34. Schizophr Res. 2007 Dec;97(1-3):194-205 - PubMed
  35. Hum Brain Mapp. 2010 Dec;31(12):2003-14 - PubMed
  36. Schizophr Res. 2014 Jul;156(2-3):197-203 - PubMed
  37. Neuroscience. 2013 Dec 3;253:274-82 - PubMed
  38. Neurosci Biobehav Rev. 2011 Jan;35(3):848-70 - PubMed
  39. Nat Rev Neurosci. 2009 Mar;10(3):186-98 - PubMed
  40. Neuroimage. 2007 Jan 1;34(1):144-55 - PubMed
  41. BMC Psychiatry. 2011 Jan 28;11:18 - PubMed
  42. Neuropsychologia. 1971 Mar;9(1):97-113 - PubMed
  43. J Neurosci. 2007 Sep 19;27(38):10259-69 - PubMed
  44. Arch Gen Psychiatry. 2004 Jul;61(7):658-68 - PubMed
  45. PLoS One. 2007 Jul 04;2(7):e597 - PubMed
  46. J Neurosci. 2008 Sep 10;28(37):9239-48 - PubMed
  47. Anat Rec. 1999 Jun 15;257(3):102-9 - PubMed
  48. Neuroimage. 2013 Jun;73:239-54 - PubMed
  49. J Neurosci. 2010 Jul 21;30(29):9788-92 - PubMed
  50. J Microbiol Methods. 2004 May;57(2):187-95 - PubMed
  51. Nat Neurosci. 2015 Nov;18(11):1664-71 - PubMed
  52. PLoS Biol. 2008 Jul 1;6(7):e159 - PubMed
  53. Brain Imaging Behav. 2012 Mar;6(1):27-35 - PubMed
  54. Proc Natl Acad Sci U S A. 2004 Sep 7;101(36):13335-40 - PubMed
  55. Hum Brain Mapp. 2002 Jan;15(1):1-25 - PubMed
  56. Proc Natl Acad Sci U S A. 2005 Jul 5;102(27):9673-8 - PubMed
  57. Biol Psychiatry. 2010 Jul 1;68(1):61-9 - PubMed
  58. Neuron. 2012 Sep 20;75(6):963-80 - PubMed
  59. Neuroimage. 2008 Apr 15;40(3):1064-76 - PubMed
  60. Neuroimage. 2002 Apr;15(4):870-8 - PubMed
  61. PLoS One. 2013;8(2):e55783 - PubMed
  62. J Neurosci. 2010 Nov 24;30(47):15915-26 - PubMed
  63. Neuroimage. 2006 May 1;30(4):1112-20 - PubMed
  64. Schizophr Res. 2013 Nov;150(2-3):468-75 - PubMed
  65. Cereb Cortex. 2005 Jan;15(1):31-9 - PubMed
  66. Biol Psychiatry. 2010 Dec 15;68(12 ):1141-7 - PubMed
  67. JAMA Psychiatry. 2014 May;71(5):531-9 - PubMed
  68. Schizophr Bull. 1995;21(3):473-82 - PubMed
  69. Front Neuroinform. 2011 Jul 22;5:10 - PubMed
  70. Biol Psychiatry. 2006 May 15;59(10):929-39 - PubMed
  71. Br J Psychiatry. 1986 Oct;149:439-48 - PubMed
  72. Nat Neurosci. 2003 Jul;6(7):750-7 - PubMed
  73. Neuropsychopharmacology. 2002 Oct;27(4):672-83 - PubMed

Publication Types

Grant support