Display options
Share it on

Front Microbiol. 2016 Jun 30;7:1002. doi: 10.3389/fmicb.2016.01002. eCollection 2016.

Adhesion, Biofilm Formation, and Genomic Features of Campylobacter jejuni Bf, an Atypical Strain Able to Grow under Aerobic Conditions.

Frontiers in microbiology

Vicky Bronnec, Hana Turoňová, Agnès Bouju, Stéphane Cruveiller, Ramila Rodrigues, Katerina Demnerova, Odile Tresse, Nabila Haddad, Monique Zagorec

Affiliations

  1. UMR 1014 SECALIM, Oniris Nantes, France.
  2. Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology Prague, Czech Republic.
  3. CNRS-UMR 8030 and Commissariat à l'Energie Atomique et aux Energies Alternatives CEA/DRF/IG/Genoscope LABGeM Evry, France.

PMID: 27446042 PMCID: PMC4927563 DOI: 10.3389/fmicb.2016.01002

Abstract

Campylobacter jejuni is the leading cause of bacterial enteritis in Europe. Human campylobacteriosis cases are frequently associated to the consumption of contaminated poultry meat. To survive under environmental conditions encountered along the food chain, i.e., from poultry digestive tract its natural reservoir to the consumer's plate, this pathogen has developed adaptation mechanisms. Among those, biofilm lifestyle has been suggested as a strategy to survive in the food environment and under atmospheric conditions. Recently, the clinical isolate C. jejuni Bf has been shown to survive and grow under aerobic conditions, a property that may help this strain to better survive along the food chain. The aim of this study was to evaluate the adhesion capacity of C. jejuni Bf and its ability to develop a biofilm. C. jejuni Bf can adhere to abiotic surfaces and to human epithelial cells, and can develop biofilm under both microaerobiosis and aerobiosis. These two conditions have no influence on this strain, unlike results obtained with the reference strain C. jejuni 81-176, which harbors only planktonic cells under aerobic conditions. Compared to 81-176, the biofilm of C. jejuni Bf is more homogenous and cell motility at the bottom of biofilm was not modified whatever the atmosphere used. C. jejuni Bf whole genome sequence did not reveal any gene unique to this strain, suggesting that its unusual property does not result from acquisition of new genetic material. Nevertheless some genetic particularities seem to be shared only between Bf and few others strains. Among the main features of C. jejuni Bf genome we noticed (i) a complete type VI secretion system important in pathogenicity and environmental adaptation; (ii) a mutation in the oorD gene involved in oxygen metabolism; and (iii) the presence of an uncommon insertion of a 72 amino acid coding sequence upstream from dnaK, which is involved in stress resistance. Therefore, the atypical behavior of this strain under aerobic atmosphere may result from the combination of insertions and mutations. In addition, the comparison of mRNA transcript levels of several genes targeted through genome analysis suggests the modification of regulatory processes in this strain.

Keywords: biofilm; confocal microscopy; food borne pathogen; genome sequence; oxidative stress

References

  1. Microbiology. 2006 Feb;152(Pt 2):387-96 - PubMed
  2. PLoS Pathog. 2014 Jan;10(1):e1003822 - PubMed
  3. Gut Pathog. 2014 Jun 12;6:20 - PubMed
  4. Nucleic Acids Res. 2006 Jan 10;34(1):53-65 - PubMed
  5. Mol Microbiol. 2013 Feb;87(3):594-608 - PubMed
  6. J Clin Microbiol. 2005 Jun;43(6):2771-81 - PubMed
  7. Emerg Infect Dis. 2014 Jun;20(6):1026-9 - PubMed
  8. Lett Appl Microbiol. 1998 Dec;27(6):341-4 - PubMed
  9. Environ Microbiol. 2011 Jun;13(6):1549-60 - PubMed
  10. Infect Immun. 1994 Jul;62(7):2687-94 - PubMed
  11. PLoS Pathog. 2013;9(5):e1003393 - PubMed
  12. J Bacteriol. 1998 Mar;180(5):1119-28 - PubMed
  13. Infect Immun. 2014 Jun;82(6):2266-75 - PubMed
  14. FEMS Microbiol Lett. 2007 Oct;275(2):278-85 - PubMed
  15. Methods. 2001 Dec;25(4):402-8 - PubMed
  16. FEMS Immunol Med Microbiol. 2007 Feb;49(1):149-54 - PubMed
  17. PLoS One. 2014 Feb 28;9(2):e89774 - PubMed
  18. Infect Immun. 2009 Jun;77(6):2399-407 - PubMed
  19. Front Microbiol. 2015 Feb 17;6:126 - PubMed
  20. J Bacteriol. 2008 Aug;190(15):5279-90 - PubMed
  21. BMC Genomics. 2007 Jun 12;8:162 - PubMed
  22. Mol Microbiol. 1997 Jun;24(5):953-63 - PubMed
  23. Nature. 2000 Feb 10;403(6770):665-8 - PubMed
  24. FEMS Microbiol Lett. 2013 Oct;347(1):83-91 - PubMed
  25. J Food Prot. 2012 Jan;75(1):195-206 - PubMed
  26. PLoS One. 2012;7(8):e42842 - PubMed
  27. J Bacteriol. 2008 Aug;190(16):5681-9 - PubMed
  28. Mol Microbiol. 2006 Jun;60(5):1262-75 - PubMed
  29. PLoS One. 2015 Jun 25;10(6):e0130575 - PubMed
  30. Res Microbiol. 2008 Nov-Dec;159(9-10):718-26 - PubMed
  31. PLoS One. 2014 Jan 31;9(1):e87312 - PubMed
  32. Clin Microbiol Rev. 2002 Apr;15(2):167-93 - PubMed
  33. Appl Environ Microbiol. 1998 Feb;64(2):733-41 - PubMed
  34. J Bacteriol. 2007 Nov;189(22):8402-3 - PubMed
  35. Nat Rev Microbiol. 2008 Mar;6(3):199-210 - PubMed
  36. Food Microbiol. 2009 Feb;26(1):44-51 - PubMed
  37. Arch Microbiol. 2012 Sep;194(9):803-8 - PubMed
  38. Appl Environ Microbiol. 2007 Mar;73(6):1908-13 - PubMed
  39. Stand Genomic Sci. 2011 Apr 29;4(2):113-22 - PubMed
  40. Appl Environ Microbiol. 2010 Apr;76(7):2122-8 - PubMed
  41. J Appl Microbiol. 2010 Apr;108(4):1303-12 - PubMed
  42. Gut Pathog. 2015 Nov 19;7:30 - PubMed
  43. Front Cell Infect Microbiol. 2012 Mar 14;2:30 - PubMed
  44. FEMS Microbiol Lett. 1997 Dec 15;157(2):233-8 - PubMed
  45. Microb Biotechnol. 2010 May;3(3):242-58 - PubMed
  46. J Bacteriol. 2003 Feb;185(3):1010-7 - PubMed
  47. Nucleic Acids Res. 2013 Jan;41(Database issue):D636-47 - PubMed
  48. Emerg Infect Dis. 2002 Sep;8(9):881-90 - PubMed
  49. Food Microbiol. 2016 Sep;58:23-8 - PubMed
  50. PLoS Biol. 2005 Jan;3(1):e15 - PubMed
  51. Infect Immun. 1998 Mar;66(3):938-43 - PubMed
  52. Curr Microbiol. 2008 Apr;56(4):293-7 - PubMed
  53. J Bacteriol. 2012 Dec;194(24):6883-91 - PubMed
  54. Genome Announc. 2016 Apr 07;4(2):null - PubMed
  55. Curr Microbiol. 2010 Dec;61(6):500-5 - PubMed
  56. Int J Food Microbiol. 2002 Apr 5;74(3):177-88 - PubMed
  57. Infect Immun. 1993 Aug;61(8):3440-8 - PubMed
  58. Mol Microbiol. 2009 Jan;71(1):253-72 - PubMed
  59. Poult Sci. 2012 Jan;91(1):255-64 - PubMed
  60. J Bacteriol. 2010 Jan;192(1):68-76 - PubMed
  61. J Appl Bacteriol. 1993;74 Suppl:67S-78S - PubMed
  62. Avian Dis. 1999 Jul-Sep;43(3):586-9 - PubMed
  63. J Bacteriol. 1999 Aug;181(16):4798-804 - PubMed
  64. J Ind Microbiol. 1995 Sep;15(3):137-40 - PubMed
  65. Biofouling. 2016;32(5):597-608 - PubMed
  66. Front Microbiol. 2015 Jul 13;6:709 - PubMed
  67. Annu Rev Microbiol. 1995;49:711-45 - PubMed
  68. Foodborne Pathog Dis. 2014 May;11(5):395-402 - PubMed
  69. Mol Microbiol. 2001 Mar;39(5):1225-36 - PubMed
  70. Microbiology. 2003 Jan;149(Pt 1):153-65 - PubMed
  71. J Bacteriol. 2006 Jun;188(12):4312-20 - PubMed
  72. Microbiology. 1995 Jun;141 ( Pt 6):1369-76 - PubMed
  73. Gut Pathog. 2015 Jul 24;7:20 - PubMed
  74. Infect Immun. 2006 Aug;74(8):4694-707 - PubMed
  75. J Bacteriol. 2007 Mar;189(5):1856-65 - PubMed
  76. PLoS One. 2011;6(7):e22300 - PubMed

Publication Types