Display options
Share it on

J Neurophysiol. 2016 Sep 01;116(3):1522-1535. doi: 10.1152/jn.00883.2015. Epub 2016 Jul 06.

Optimal visuotactile integration for velocity discrimination of self-hand movements.

Journal of neurophysiology

M Chancel, C Blanchard, M Guerraz, A Montagnini, A Kavounoudias

Affiliations

  1. LNIA UMR 7260, Aix Marseille Université-Centre National de la Recherche Scientifique (CNRS), Marseille, France; LPNC UMR 5105, Université Savoie Mont Blanc-CNRS, Chambéry, France;
  2. School of Psychology, University of Nottingham, Nottingham, United Kingdom; and.
  3. LPNC UMR 5105, Université Savoie Mont Blanc-CNRS, Chambéry, France;
  4. INT UMR 7289, Aix Marseille Université-CNRS, Marseille, France.
  5. LNIA UMR 7260, Aix Marseille Université-Centre National de la Recherche Scientifique (CNRS), Marseille, France; [email protected].

PMID: 27385802 PMCID: PMC5040371 DOI: 10.1152/jn.00883.2015

Abstract

Illusory hand movements can be elicited by a textured disk or a visual pattern rotating under one's hand, while proprioceptive inputs convey immobility information (Blanchard C, Roll R, Roll JP, Kavounoudias A. PLoS One 8: e62475, 2013). Here, we investigated whether visuotactile integration can optimize velocity discrimination of illusory hand movements in line with Bayesian predictions. We induced illusory movements in 15 volunteers by visual and/or tactile stimulation delivered at six angular velocities. Participants had to compare hand illusion velocities with a 5°/s hand reference movement in an alternative forced choice paradigm. Results showed that the discrimination threshold decreased in the visuotactile condition compared with unimodal (visual or tactile) conditions, reflecting better bimodal discrimination. The perceptual strength (gain) of the illusions also increased: the stimulation required to give rise to a 5°/s illusory movement was slower in the visuotactile condition compared with each of the two unimodal conditions. The maximum likelihood estimation model satisfactorily predicted the improved discrimination threshold but not the increase in gain. When we added a zero-centered prior, reflecting immobility information, the Bayesian model did actually predict the gain increase but systematically overestimated it. Interestingly, the predicted gains better fit the visuotactile performances when a proprioceptive noise was generated by covibrating antagonist wrist muscles. These findings show that kinesthetic information of visual and tactile origins is optimally integrated to improve velocity discrimination of self-hand movements. However, a Bayesian model alone could not fully describe the illusory phenomenon pointing to the crucial importance of the omnipresent muscle proprioceptive cues with respect to other sensory cues for kinesthesia.

Copyright © 2016 the American Physiological Society.

Keywords: Bayesian modeling; illusions; kinesthesia; multisensory integration; muscle proprioception

References

  1. Proc Biol Sci. 2006 Sep 7;273(1598):2159-68 - PubMed
  2. Front Psychol. 2011 Apr 13;2:55 - PubMed
  3. Physiol Rev. 1978 Oct;58(4):763-820 - PubMed
  4. Neuropsychologia. 2008 Jan 31;46(2):567-75 - PubMed
  5. PLoS Comput Biol. 2010 Feb 19;6(2):e1000680 - PubMed
  6. Exp Brain Res. 2010 Apr;201(4):853-62 - PubMed
  7. Nat Neurosci. 2006 Nov;9(11):1432-8 - PubMed
  8. Exp Brain Res. 1989;76(1):213-22 - PubMed
  9. Nat Neurosci. 2000 Mar;3(3):277-83 - PubMed
  10. Neuroscience. 2012 Oct 25;223:258-68 - PubMed
  11. Brain Res. 2011 Mar 25;1382:219-29 - PubMed
  12. Trends Neurosci. 2004 Dec;27(12):712-9 - PubMed
  13. J Neurosci. 2003 Aug 6;23(18):6982-92 - PubMed
  14. Exp Brain Res. 2005 Apr;162(2):172-80 - PubMed
  15. Front Integr Neurosci. 2011 Nov 04;5:75 - PubMed
  16. Hear Res. 2009 Dec;258(1-2):28-36 - PubMed
  17. J Neurosci. 2009 Dec 9;29(49):15601-12 - PubMed
  18. Brain Res. 1984 Mar 26;296(1):103-9 - PubMed
  19. Neuropsychologia. 2010 Feb;48(3):703-12 - PubMed
  20. PLoS One. 2013 Apr 23;8(4):e62475 - PubMed
  21. Nat Neurosci. 2001 Nov;4(11):1063-4 - PubMed
  22. PLoS One. 2013 Jul 05;8(7):e68438 - PubMed
  23. Physiol Rev. 2012 Oct;92(4):1651-97 - PubMed
  24. Cereb Cortex. 2001 Dec;11(12 ):1110-23 - PubMed
  25. Trends Cogn Sci. 2006 Jun;10(6):278-85 - PubMed
  26. Percept Psychophys. 2001 Nov;63(8):1314-29 - PubMed
  27. Nat Rev Neurosci. 2013 Jun;14(6):429-42 - PubMed
  28. Nat Neurosci. 2005 Apr;8(4):490-7 - PubMed
  29. J Neurosci. 2011 Apr 6;31(14):5365-77 - PubMed
  30. PLoS One. 2007 Sep 26;2(9):e943 - PubMed
  31. Neuron. 2008 Aug 28;59(4):662-73 - PubMed
  32. Nat Neurosci. 2002 Jun;5(6):598-604 - PubMed
  33. Curr Opin Neurobiol. 1998 Apr;8(2):195-201 - PubMed
  34. Curr Biol. 2004 Feb 3;14(3):257-62 - PubMed
  35. J Neurophysiol. 2011 Feb;105(2):910-22 - PubMed
  36. Biol Cybern. 2007 Apr;96(4):389-404 - PubMed
  37. Exp Brain Res. 1999 Feb;124(3):342-50 - PubMed
  38. J Physiol Paris. 2007 Jan-May;101(1-3):64-77 - PubMed
  39. Nature. 2002 Jan 24;415(6870):429-33 - PubMed
  40. Neuroimage. 2012 Apr 2;60(2):1063-72 - PubMed
  41. J Neurophysiol. 2012 Oct;108(8):2282-91 - PubMed
  42. J Neurophysiol. 2011 Jul;106(1):59-70 - PubMed
  43. Neuropsychologia. 2001;39(12):1304-16 - PubMed
  44. J Neurosci. 2009 Apr 15;29(15):4897-902 - PubMed
  45. Exp Brain Res. 2010 Jan;200(1):37-49 - PubMed
  46. Neurosci Biobehav Rev. 2012 Jan;36(1):111-33 - PubMed
  47. Nat Neurosci. 2006 Apr;9(4):578-85 - PubMed
  48. Exp Brain Res. 2009 Sep;198(2-3):113-26 - PubMed
  49. Albrecht Von Graefes Arch Klin Exp Ophthalmol. 1972;184(1):42-57 - PubMed
  50. J Neurophysiol. 2006 Sep;96(3):1625-37 - PubMed
  51. J Anat. 2005 Jul;207(1):3-17 - PubMed
  52. Neurosci Lett. 2008 Sep 26;443(1):12-6 - PubMed
  53. Exp Brain Res. 2006 Oct;174(3):528-43 - PubMed
  54. Neuron. 2001 Jan;29(1):287-96 - PubMed
  55. J Vis. 2008 Mar 27;8(3):24.1-11 - PubMed
  56. Curr Biol. 2002 May 14;12(10):834-7 - PubMed
  57. J Cogn Neurosci. 2009 Jul;21(7):1311-20 - PubMed

Publication Types