Display options
Share it on

FEBS Open Bio. 2016 Mar 22;6(5):398-408. doi: 10.1002/2211-5463.12042. eCollection 2016 May.

Inactive mutants of human pyridoxine 5'-phosphate oxidase: a possible role for a noncatalytic pyridoxal 5'-phosphate tight binding site.

FEBS open bio

Mohini S Ghatge, Sayali S Karve, Tanya M S David, Mostafa H Ahmed, Faik N Musayev, Kendra Cunningham, Verne Schirch, Martin K Safo

Affiliations

  1. Department of Medicinal Chemistry School of Pharmacy and Institute for Structural Biology, Drug Discovery and Development Virginia Commonwealth University Richmond VA USA.

PMID: 27419045 PMCID: PMC4856418 DOI: 10.1002/2211-5463.12042

Abstract

Pyridoxal 5'-phosphate (PLP) is a cofactor for many vitamin B6-requiring enzymes that are important for the synthesis of neurotransmitters. Pyridoxine 5'-phosphate oxidase (PNPO) is one of two enzymes that produce PLP. Some 16 known mutations in human PNPO (hPNPO), including R95C and R229W, lead to deficiency of PLP in the cell and have been shown to cause neonatal epileptic encephalopathy (NEE). This disorder has no effective treatment, and is often fatal unless treated with PLP. In this study, we show that R95C hPNPO exhibits a 15-fold reduction in affinity for the FMN cofactor, a 71-fold decrease in affinity for the substrate PNP, a 4.9-fold decrease in specific activity, and a 343-fold reduction in catalytic activity, compared to the wild-type enzyme. We have reported similar findings for R229W hPNPO. This report also shows that wild-type, R95C and R229W hPNPO bind PLP tightly at a noncatalytic site and transfer it to activate an apo-B6 enzyme into the catalytically active holo-form. We also show for the first time that hPNPO forms specific interactions with several B6 enzymes with dissociation constants ranging from 0.3 to 12.3 μm. Our results suggest a possible in vivo role for the tight binding of PLP in hPNPO, whether wild-type or variant, by protecting the very reactive PLP, and transferring this PLP directly to activate apo-B6 enzymes.

Keywords: enzyme mutation; neonatal epileptic encephalopathy; neurotransmitters; pyridoxal 5′‐phosphate; pyridoxine 5′‐phosphate oxidase; vitamin B6

References

  1. J Biol Chem. 1975 Mar 10;250(5):1939-45 - PubMed
  2. Biochim Biophys Acta. 2011 Nov;1814(11):1597-608 - PubMed
  3. Am J Clin Nutr. 1974 Apr;27(4):326-33 - PubMed
  4. Protein Expr Purif. 1998 Jul;13(2):177-83 - PubMed
  5. J Biol Chem. 2003 Aug 15;278(33):31088-94 - PubMed
  6. J Inherit Metab Dis. 2007 Feb;30(1):96-9 - PubMed
  7. J Mol Biol. 2001 Jul 20;310(4):817-26 - PubMed
  8. J Biol Chem. 1987 May 5;262(13):6089-92 - PubMed
  9. Brain. 2014 May;137(Pt 5):1350-60 - PubMed
  10. Biochemistry. 1979 Aug 7;18(16):3635-41 - PubMed
  11. Arch Biochem Biophys. 2000 May 1;377(1):109-14 - PubMed
  12. J Biol Chem. 1988 Sep 25;263(27):13712-7 - PubMed
  13. J Inherit Metab Dis. 2006 Apr-Jun;29(2-3):317-26 - PubMed
  14. Chang Gung Med J. 2010 Jan-Feb;33(1):1-12 - PubMed
  15. Mol Genet Metab. 2008 Jun;94(2):173-7 - PubMed
  16. J Biochem. 2003 Nov;134(5):731-8 - PubMed
  17. J Biol Chem. 2009 Nov 6;284(45):30949-56 - PubMed
  18. J Nutr. 1999 Feb;129(2):325-7 - PubMed
  19. J Biol Chem. 2000 Mar 24;275(12):8733-41 - PubMed
  20. Dev Med Child Neurol. 2010 Jul;52(7):602-3 - PubMed
  21. Hum Mol Genet. 2005 Apr 15;14(8):1077-86 - PubMed
  22. Lancet. 2003 May 10;361(9369):1614 - PubMed
  23. PLoS One. 2011 Jan 21;6(1):e16042 - PubMed
  24. Protein Sci. 2003 Jul;12(7):1455-63 - PubMed
  25. J Mol Biol. 2002 Jan 18;315(3):385-97 - PubMed
  26. Mol Genet Metab. 2008 Aug;94(4):431-4 - PubMed
  27. J Biol Chem. 1992 Aug 5;267(22):15978-83 - PubMed
  28. Mol Genet Metab. 2008 Feb;93(2):216-8 - PubMed
  29. Biochem Biophys Res Commun. 1974 Nov 27;61(2):677-84 - PubMed
  30. PLoS One. 2012;7(7):e41680 - PubMed
  31. Nat Med. 2006 Mar;12(3):307-9 - PubMed
  32. Arch Dis Child Fetal Neonatal Ed. 2008 Mar;93(2):F151-2 - PubMed

Publication Types

Grant support