Display options
Share it on

FEBS Open Bio. 2016 Apr 13;6(5):442-60. doi: 10.1002/2211-5463.12055. eCollection 2016 May.

Angiotensin II type 1 receptor blocker telmisartan induces apoptosis and autophagy in adult T-cell leukemia cells.

FEBS open bio

Tomohiro Kozako, Shuhei Soeda, Makoto Yoshimitsu, Naomichi Arima, Ayako Kuroki, Shinya Hirata, Hiroaki Tanaka, Osamu Imakyure, Nanako Tone, Shin-Ichiro Honda, Shinji Soeda

Affiliations

  1. Department of Biochemistry Faculty of Pharmaceutical Sciences Fukuoka University Japan.
  2. Department of Hematology and Immunology Kagoshima University Hospital Japan; Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan.
  3. Division of Hematology and Immunology School of Medical and Dental Sciences Center for Chronic Viral Diseases Graduate Kagoshima University Japan.
  4. Department of Rheumatology and Clinical Immunology Kumamoto University Hospital Japan.
  5. Faculty of Sports and Health Science Fukuoka University Japan.
  6. Department of Pharmaceutical Care and Health Sciences Faculty of Pharmaceutical Sciences Fukuoka University Japan.

PMID: 27419050 PMCID: PMC4856423 DOI: 10.1002/2211-5463.12055

Abstract

Adult T-cell leukemia/lymphoma (ATL), an aggressive T-cell malignancy that develops after long-term infection with human T-cell leukemia virus (HTLV-1), requires new treatments. Drug repositioning, reuse of a drug previously approved for the treatment of another condition to treat ATL, offers the possibility of reduced time and risk. Among clinically available angiotensin II receptor blockers, telmisartan is well known for its unique ability to activate peroxisome proliferator-activated receptor-γ, which plays various roles in lipid metabolism, cellular differentiation, and apoptosis. Here, telmisartan reduced cell viability and enhanced apoptotic cells via caspase activation in ex vivo peripheral blood monocytes from asymptomatic HTLV-1 carriers (ACs) or via caspase-independent cell death in acute-type ATL, which has a poor prognosis. Telmisartan also induced significant growth inhibition and apoptosis in leukemia cell lines via caspase activation, whereas other angiotensin II receptor blockers did not induce cell death. Interestingly, telmisartan increased the LC3-II-enriched protein fraction, indicating autophagosome accumulation and autophagy. Thus, telmisartan simultaneously caused caspase activation and autophagy. A hypertension medication with antiproliferation effects on primary and leukemia cells is intriguing. Patients with an early diagnosis of ATL are generally monitored until the disease progresses; thus, suppression of progression from AC and indolent ATL to acute ATL is important. Our results suggest that telmisartan is highly effective against primary cells and leukemia cell lines in caspase-dependent and -independent manners, and its clinical use may suppress acute transformation and improve prognosis of patients with this mortal disease. This is the first report demonstrating a cell growth-inhibitory effect of telmisartan in fresh peripheral blood mononuclear cells from leukemia patients.

Keywords: adult T‐cell leukemia/lymphoma; apoptosis; autophagy; drug repositioning; human T‐cell leukemia virus‐1; telmisartan

References

  1. Oncogene. 2015 Jan 15;34(3):334-45 - PubMed
  2. Br J Haematol. 2001 May;113(2):375-82 - PubMed
  3. Molecules. 2014 Mar 05;19(3):2862-76 - PubMed
  4. Autophagy. 2012 Sep;8(9):1371-82 - PubMed
  5. Exp Hematol. 2004 Feb;32(2):195-201 - PubMed
  6. Nat Med. 2005 Jul;11(7):725-30 - PubMed
  7. J Immunol. 2006 Oct 15;177(8):5718-26 - PubMed
  8. Leukemia. 2000 Apr;14(4):716-21 - PubMed
  9. PPAR Res. 2012;2012:483656 - PubMed
  10. Int J Cancer. 2008 Dec 1;123(11):2702-12 - PubMed
  11. Annu Rev Immunol. 2001;19:475-96 - PubMed
  12. Mol Cancer Ther. 2011 Sep;10(9):1533-41 - PubMed
  13. Lancet Oncol. 2014 Oct;15(11):e517-26 - PubMed
  14. Science. 1998 Aug 28;281(5381):1309-12 - PubMed
  15. Recent Results Cancer Res. 2014;193:211-25 - PubMed
  16. Leukemia. 2009 Feb;23(2):375-82 - PubMed
  17. Int J Cancer. 2007 May 1;120(9):2052-7 - PubMed
  18. Molecules. 2014 Dec 04;19(12):20295-313 - PubMed
  19. J Neurovirol. 1997 May;3 Suppl 1:S50-1 - PubMed
  20. Methods Mol Biol. 2011;682:103-14 - PubMed
  21. Leuk Res Treatment. 2012;2012:101754 - PubMed
  22. J Clin Invest. 2005 Oct;115(10):2679-88 - PubMed
  23. Clin Cancer Res. 2003 Sep 1;9(10 Pt 1):3625-34 - PubMed
  24. Onkologie. 2013;36(10):598-601 - PubMed
  25. Int J Cancer. 2012 Nov 1;131(9):2044-55 - PubMed
  26. Cell. 2014 Mar 27;157(1):65-75 - PubMed
  27. Blood. 2006 May 15;107(10):3933-9 - PubMed
  28. Nat Rev Cancer. 2007 Apr;7(4):270-80 - PubMed
  29. Nat Genet. 2015 Nov;47(11):1304-15 - PubMed
  30. Int J Biol Sci. 2014 Jun 10;10(7):654-63 - PubMed
  31. Nature. 1981 Dec 24;294(5843):770-1 - PubMed
  32. Clin Cancer Res. 2014 Oct 15;20(20):5217-25 - PubMed
  33. Nat Rev Drug Discov. 2004 Aug;3(8):673-83 - PubMed
  34. Nat Rev Mol Cell Biol. 2010 Sep;11(9):621-32 - PubMed
  35. Annu Rev Immunol. 1997;15:15-37 - PubMed
  36. J Cheminform. 2013 Jun 22;5(1):30 - PubMed
  37. Virology. 2008 Jan 20;370(2):264-72 - PubMed
  38. Hypertension. 2004 May;43(5):993-1002 - PubMed
  39. Sci Rep. 2015 Jun 19;5:11345 - PubMed
  40. Leukemia. 2014 Mar;28(3):577-88 - PubMed
  41. Oncogene. 2011 Mar 24;30(12 ):1379-89 - PubMed
  42. FEBS J. 2011 Apr;278(8):1358-66 - PubMed
  43. Exp Ther Med. 2010 Mar;1(2):301-306 - PubMed
  44. Mol Immunol. 2009 Dec;47(2-3):606-13 - PubMed
  45. Lancet Infect Dis. 2007 Apr;7(4):266-81 - PubMed
  46. Br J Haematol. 1991 Nov;79(3):428-37 - PubMed
  47. J Clin Oncol. 2007 Dec 1;25(34):5458-64 - PubMed
  48. Cell Death Differ. 2009 Jan;16(1):3-11 - PubMed
  49. J Clin Oncol. 2009 Jan 20;27(3):453-9 - PubMed
  50. Dev Cell. 2004 Apr;6(4):463-77 - PubMed
  51. J Clin Oncol. 2012 Mar 10;30(8):837-42 - PubMed

Publication Types