Display options
Share it on

Genes Environ. 2015 Oct 01;37:13. doi: 10.1186/s41021-015-0018-4. eCollection 2015.

Progerin, the protein responsible for the Hutchinson-Gilford progeria syndrome, increases the unrepaired DNA damages following exposure to ionizing radiation.

Genes and environment : the official journal of the Japanese Environmental Mutagen Society

Asao Noda, Shuji Mishima, Yuko Hirai, Kanya Hamasaki, Reid D Landes, Hiroshi Mitani, Kei Haga, Tohru Kiyono, Nori Nakamura, Yoshiaki Kodama

Affiliations

  1. Department of Genetics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan.
  2. Department of Statistics, Radiation Effects Research Foundation, 5-2 Hijiyama-Park, Minami-Ku, Hiroshima 732-0815 Japan.
  3. Department of Integrated Biosciences, Graduate School of Sciences, The University of Tokyo, Kashiwa-no-ha 5-1-5, Kashiwa, Chiba 277-8572 Japan.
  4. Division of Virology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan.
  5. Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045 Japan.

PMID: 27350809 PMCID: PMC4917958 DOI: 10.1186/s41021-015-0018-4

Abstract

INTRODUCTION: Progerin, the protein responsible for the Hutchinson-Gilford Progeria Syndrome (HGPS), is a partially deleted form of nuclear lamin A, and its expression has been suggested as a cause for dysfunctional nuclear membrane and premature senescence. To examine the role of nuclear envelop architecture in regulating cellular aging and DNA repair, we used ionizing radiation to increase the number of DNA double strand breaks (DSBs) in normal and HGPS cells, and analyzed possible relationship between unrepaired DSBs and cellular aging.

RESULTS: We found that HGPS cells are normal in repairing a major fraction of radiation-induced double strand breaks (M-DSBs)but abnormal to show increased amount of residual unrepaired DSBs (R-DSBs). Such unrepaired DSBs were 2.6 times (CI 95 %: 2.2-3.2) higher than that in normal cells one week after the irradiation, and 1.6 times (CI 95 %: 1.3-1.9) higher even one month after the irradiation. These damages tend to increase as the nuclear envelope become abnormal, a characteristic of both HGPS and normal human cells which undergo replicative senescence. The artificial, enforced over-expression of progerin further impaired the repair of M-DSBs, implying lamin A-associated nuclear membrane has an important role for DNA DSB repair. Introduction of telomerase gene function in HGPS cells reversed such aging phenotypes along with upregulation of lamin B1 and downregulation of progerin, which is a hallmark of young cells.

CONCLUSION: We suggest that lamin A- or progerin-associated nuclear envelope is involved in cellular aging associated with DNA damage repair.

Keywords: Cell aging; FTI; HGPS; Radiation; Unrepairable DSB

References

  1. J Cell Sci. 2006 Nov 15;119(Pt 22):4644-9 - PubMed
  2. Hum Mol Genet. 2011 Oct 15;20(20):3997-4004 - PubMed
  3. Science. 2003 Jun 27;300(5628):2055 - PubMed
  4. Exp Cell Res. 2010 Oct 15;316(17):2747-59 - PubMed
  5. Proc Natl Acad Sci U S A. 2004 Jun 15;101(24):8963-8 - PubMed
  6. Nature. 2005 Sep 22;437(7058):564-8 - PubMed
  7. Genes Dev. 2009 Apr 15;23 (8):912-27 - PubMed
  8. Nat Cell Biol. 2004 Feb;6(2):168-70 - PubMed
  9. Nature. 2003 May 15;423(6937):293-8 - PubMed
  10. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12879-84 - PubMed
  11. Genes Dev. 2011 Dec 15;25(24):2579-93 - PubMed
  12. Nat Genet. 2000 Jan;24(1):16-7 - PubMed
  13. PLoS One. 2012;7(6):e39521 - PubMed
  14. J Cell Biol. 2006 Jan 16;172(2):189-99 - PubMed
  15. Nat Med. 2005 Apr;11(4):440-5 - PubMed
  16. J Cell Biol. 2013 May 13;201(4):541-57 - PubMed
  17. Circulation. 2011 Apr 19;123(15):1650-60 - PubMed
  18. Nat Med. 2005 Jul;11(7):780-5 - PubMed
  19. Nat Rev Mol Cell Biol. 2011 Dec 14;13(1):3 - PubMed
  20. Proc Natl Acad Sci U S A. 2005 Oct 4;102(40):14416-21 - PubMed
  21. Proc Natl Acad Sci U S A. 2005 Sep 6;102(36):12873-8 - PubMed
  22. Science. 2007 Nov 30;318(5855):1408-12 - PubMed
  23. Tex Rep Biol Med. 1970 Fall;28(3):203-48 - PubMed
  24. Proc Natl Acad Sci U S A. 2008 Jul 29;105(30):10314-9 - PubMed
  25. J Cell Sci. 2012 May 1;125(Pt 9):2087-93 - PubMed
  26. Mol Biol Cell. 2012 Jun;23(11):2066-75 - PubMed
  27. Cell Cycle. 2011 Aug 1;10 (15):2549-60 - PubMed
  28. Adv Exp Med Biol. 1985;190:305-11 - PubMed
  29. Nat Cell Biol. 2008 Apr;10(4):452-9 - PubMed
  30. Proc Natl Acad Sci U S A. 2003 Oct 28;100(22):12871-6 - PubMed
  31. Mol Cell. 2013 Jul 25;51(2):141-55 - PubMed
  32. Proc Natl Acad Sci U S A. 2006 Jul 5;103(27):10271-6 - PubMed
  33. Exp Cell Res. 2008 Jan 1;314(1):82-91 - PubMed
  34. J Cell Sci. 2006 Jul 1;119(Pt 13):2704-14 - PubMed
  35. Radiat Res. 2010 Jan;173(1):1-9 - PubMed
  36. Exp Cell Res. 1994 Mar;211(1):90-8 - PubMed
  37. Radiology. 2009 Apr;251(1):13-22 - PubMed
  38. J Cell Sci. 2012 Nov 15;125(Pt 22):5280-7 - PubMed
  39. Nature. 2008 Mar 13;452(7184):243-7 - PubMed
  40. Science. 2008 Oct 24;322(5901):597-602 - PubMed
  41. Stem Cells. 2006 Jan;24(1):177-85 - PubMed
  42. J Cell Sci. 2010 Aug 1;123(Pt 15):2605-12 - PubMed
  43. Genes Dev. 2002 Mar 1;16(5):533-47 - PubMed
  44. PLoS One. 2007 Dec 05;2(12):e1269 - PubMed
  45. Biochim Biophys Acta. 2010 Apr;1800(4):448-58 - PubMed
  46. Aging Cell. 2010 Jun;9(3):398-409 - PubMed
  47. Science. 2006 May 19;312(5776):1059-63 - PubMed
  48. Cell Stem Cell. 2011 Jan 7;8(1):31-45 - PubMed
  49. J Gerontol. 1979 May;34(3):328-34 - PubMed
  50. Proc Natl Acad Sci U S A. 2007 Mar 20;104(12):4949-54 - PubMed
  51. Nature. 2011 Apr 14;472(7342):221-5 - PubMed

Publication Types