Display options
Share it on

Biol Sex Differ. 2016 Jul 07;7:32. doi: 10.1186/s13293-016-0084-8. eCollection 2016.

Male and female hypertrophic rat cardiac myocyte functional responses to ischemic stress and β-adrenergic challenge are different.

Biology of sex differences

James R Bell, Claire L Curl, Tristan W Harding, Martin Vila Petroff, Stephen B Harrap, Lea M D Delbridge

Affiliations

  1. Department of Physiology, University of Melbourne, Melbourne, Victoria Australia.
  2. Centro de Investigaciones Cardiovasculares, Centro Cientifico Tecnologico La Plata, Facultad de Ciencias Medicas, Universidad Nacional de La Plata, La Plata, Argentina.
  3. Cardiac Phenomics Laboratory, Department of Physiology, University of Melbourne, Melbourne, Victoria 3010 Australia.

PMID: 27390618 PMCID: PMC4936311 DOI: 10.1186/s13293-016-0084-8

Abstract

BACKGROUND: Cardiac hypertrophy is the most potent cardiovascular risk factor after age, and relative mortality risk linked with cardiac hypertrophy is greater in women. Ischemic heart disease is the most common form of cardiovascular pathology for both men and women, yet significant differences in incidence and outcomes exist between the sexes. Cardiac hypertrophy and ischemia are frequently occurring dual pathologies. Whether the cellular (cardiomyocyte) mechanisms underlying myocardial damage differ in women and men remains to be determined. In this study, utilizing an in vitro experimental approach, our goal was to examine the proposition that responses of male/female cardiomyocytes to ischemic (and adrenergic) stress may be differentially modulated by the presence of pre-existing cardiac hypertrophy.

METHODS: We used a novel normotensive custom-derived hypertrophic heart rat (HHR; vs control strain normal heart rat (NHR)). Cardiomyocyte morphologic and electromechanical functional studies were performed using microfluorimetric techniques involving simulated ischemia/reperfusion protocols.

RESULTS: HHR females exhibited pronounced cardiac/cardiomyocyte enlargement, equivalent to males. Under basal conditions, a lower twitch amplitude in female myocytes was prominent in normal but not in hypertrophic myocytes. The cardiomyocyte Ca(2+) responses to β-adrenergic challenge differed in hypertrophic male and female cardiomyocytes, with the accentuated response in males abrogated in females-even while contractile responses were similar. In simulated ischemia, a marked and selective elevation of end-ischemia Ca(2+) in normal female myocytes was completely suppressed in hypertrophic female myocytes-even though all groups demonstrated similar shifts in myocyte contractile performance. After 30 min of simulated reperfusion, the Ca(2+) desensitization characterizing the male response was distinctively absent in female cardiomyocytes.

CONCLUSIONS: Our data demonstrate that cardiac hypertrophy produces dramatically different basal and stress-induced pathophenotypes in female- and male-origin cardiomyocytes. The lower Ca(2+) operational status characteristic of female (vs male) cardiomyocytes comprising normal hearts is not exhibited by myocytes of hypertrophic hearts. After ischemia/reperfusion, availability of activator Ca(2+) is suppressed in female hypertrophic myocytes, whereas sensitivity to Ca(2+) is blunted in male hypertrophic myocytes. These findings demonstrate that selective intervention strategies should be pursued to optimize post-ischemic electromechanical support for male and female hypertrophic hearts.

Keywords: Cardiac hypertrophy; Cardiomyocyte; Ischemia/reperfusion; Sex/gender; Stress response

References

  1. Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H800-10 - PubMed
  2. Life Sci. 2005 Apr 22;76(23):2735-49 - PubMed
  3. Am J Physiol. 1997 May;272(5 Pt 2):H2425-35 - PubMed
  4. JAMA. 2013 Mar 27;309(12):1268-77 - PubMed
  5. Physiol Genomics. 2002;9(1):43-8 - PubMed
  6. PLoS One. 2014 Oct 23;9(10):e111411 - PubMed
  7. Cardiovasc Res. 2007 Mar 1;73(4):689-98 - PubMed
  8. Pflugers Arch. 2001 Feb;441(5):709-16 - PubMed
  9. Am J Physiol Regul Integr Comp Physiol. 2010 Jun;298(6):R1597-606 - PubMed
  10. Eur Heart J. 2005 Aug;26(15):1499-505 - PubMed
  11. Clin Sci (Lond). 2016 Mar;130(5):365-76 - PubMed
  12. J Am Coll Cardiol. 2009 Oct 20;54(17):1561-75 - PubMed
  13. Int J Cardiol. 2015 Feb 15;181:288-96 - PubMed
  14. Clin Exp Pharmacol Physiol. 2007 May-Jun;34(5-6):432-8 - PubMed
  15. Steroids. 1996 Apr;61(4):201-4 - PubMed
  16. Circ Res. 2011 Sep 2;109(6):687-96 - PubMed
  17. Am J Physiol Heart Circ Physiol. 2011 Jul;301(1):H115-22 - PubMed
  18. J Mol Cell Cardiol. 2012 Jan;52(1):32-42 - PubMed
  19. Am J Physiol Heart Circ Physiol. 2002 Aug;283(2):H481-9 - PubMed
  20. J Mol Cell Cardiol. 1996 Apr;28(4):723-33 - PubMed
  21. Am J Physiol. 1995 Jul;269(1 Pt 2):H121-9 - PubMed
  22. Eur J Pharmacol. 2009 Jan 14;602(2-3):364-72 - PubMed
  23. Am J Physiol Heart Circ Physiol. 2005 Feb;288(2):H469-76 - PubMed
  24. Pflugers Arch. 2013 May;465(5):747-63 - PubMed
  25. Am J Physiol Heart Circ Physiol. 2011 Sep;301(3):H1127-34 - PubMed
  26. N Engl J Med. 1990 May 31;322(22):1561-6 - PubMed
  27. J Pharmacol Exp Ther. 2000 Nov;295(2):697-704 - PubMed
  28. Am J Physiol Heart Circ Physiol. 2008 May;294(5):H2174-83 - PubMed
  29. Am J Physiol Heart Circ Physiol. 2002 Jan;282(1):H256-63 - PubMed
  30. Endocrinology. 2015 Apr;156(4):1429-40 - PubMed
  31. Life Sci. 1998;63(11):955-64 - PubMed
  32. J Clin Invest. 2014 Jun;124(6):2375-7 - PubMed
  33. Am J Physiol Cell Physiol. 2007 May;292(5):C1625-35 - PubMed
  34. Circulation. 2012 Jan 3;125(1):e2-e220 - PubMed
  35. Am J Physiol Regul Integr Comp Physiol. 2009 Mar;296(3):R672-80 - PubMed
  36. Am J Physiol Heart Circ Physiol. 2008 Apr;294(4):H1514-22 - PubMed
  37. J Mol Cell Cardiol. 2005 Feb;38(2):289-97 - PubMed
  38. Am J Physiol Heart Circ Physiol. 2016 Feb 15;310(4):H505-15 - PubMed
  39. Am J Physiol Heart Circ Physiol. 2003 Dec;285(6):H2657-62 - PubMed
  40. PLoS One. 2012;7(6):e38425 - PubMed
  41. J Mol Cell Cardiol. 2014 Oct;75:162-73 - PubMed
  42. Am J Physiol Heart Circ Physiol. 2014 Apr 1;306(7):H938-53 - PubMed
  43. Clin Exp Pharmacol Physiol. 2011 Oct;38(10):717-23 - PubMed
  44. Am J Physiol Heart Circ Physiol. 2010 Jul;299(1):H36-45 - PubMed
  45. J Cell Sci Ther. 2014 Jan 30;5(1):153 - PubMed
  46. Am J Physiol Heart Circ Physiol. 2007 Dec;293(6):H3584-92 - PubMed
  47. Hypertension. 2013 Feb;61(2):270-7 - PubMed
  48. Endocrinology. 2004 Feb;145(2):951-8 - PubMed
  49. Circulation. 2016 Mar 1;133(9):916-47 - PubMed
  50. Can J Cardiol. 2014 Jul;30(7):783-92 - PubMed
  51. Cardiovasc Res. 2011 Apr 1;90(1):9-17 - PubMed
  52. J Physiol Sci. 2014 Jul;64(4):269-77 - PubMed
  53. J Steroid Biochem Mol Biol. 2013 Sep;137:124-35 - PubMed
  54. Endocrinology. 2011 Dec;152(12):4937-47 - PubMed
  55. J Gerontol A Biol Sci Med Sci. 2012 Mar;67(3):217-27 - PubMed
  56. Physiol Genomics. 2002 Dec 26;12(1):61-7 - PubMed
  57. J Clin Invest. 2014 Jun;124(6):2464-71 - PubMed
  58. Nat Rev Cardiol. 2013 Sep;10(9):508-18 - PubMed
  59. Circ Res. 1998 Dec 14-28;83(12):1215-23 - PubMed
  60. Circ Cardiovasc Qual Outcomes. 2010 Mar;3(2):111-5 - PubMed
  61. J Mol Cell Cardiol. 2012 Jan;52(1):7-9 - PubMed
  62. Pediatr Cardiol. 2011 Mar;32(3):354-9 - PubMed
  63. Exp Physiol. 1998 May;83(3):305-21 - PubMed
  64. Circulation. 2014 Jan 21;129(3):399-410 - PubMed
  65. Biophys J. 1996 Mar;70(3):1494-504 - PubMed
  66. Life Sci. 2000;66(6):533-43 - PubMed
  67. Clin Exp Pharmacol Physiol. 2003 Jul;30(7):489-94 - PubMed
  68. J Pharmacol Exp Ther. 1998 Feb;284(2):586-91 - PubMed
  69. Am J Physiol Heart Circ Physiol. 2012 Feb 15;302(4):H964-72 - PubMed
  70. Mol Pharmacol. 2003 Sep;64(3):533-46 - PubMed
  71. Am J Physiol Heart Circ Physiol. 2014 Mar;306(6):H781-8 - PubMed
  72. Cytokine. 2015 Jan;71(1):54-9 - PubMed
  73. Arch Intern Med. 2011 Oct 24;171(19):1703-9 - PubMed
  74. Circ Res. 2007 Nov 26;101(11):1155-63 - PubMed
  75. Am J Physiol Heart Circ Physiol. 2014 May;306(9):H1265-74 - PubMed
  76. Circulation. 2012 Aug 21;126(8):913-5 - PubMed

Publication Types