Display options
Share it on

Sci Rep. 2016 Jul 26;6:30535. doi: 10.1038/srep30535.

Controlling the phase locking of stochastic magnetic bits for ultra-low power computation.

Scientific reports

Alice Mizrahi, Nicolas Locatelli, Romain Lebrun, Vincent Cros, Akio Fukushima, Hitoshi Kubota, Shinji Yuasa, Damien Querlioz, Julie Grollier

Affiliations

  1. Unité Mixte de Physique CNRS, Thales, Univ. Paris-Sud, Université Paris-Saclay, 91767 Palaiseau, France.
  2. Centre de Nanosciences et de Nanotechnologies, CNRS, Univ Paris-Sud, Université Paris-Saclay, 91405 Orsay France.
  3. Spintronics Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan.

PMID: 27457034 PMCID: PMC4960588 DOI: 10.1038/srep30535

Abstract

When fabricating magnetic memories, one of the main challenges is to maintain the bit stability while downscaling. Indeed, for magnetic volumes of a few thousand nm(3), the energy barrier between magnetic configurations becomes comparable to the thermal energy at room temperature. Then, switches of the magnetization spontaneously occur. These volatile, superparamagnetic nanomagnets are generally considered useless. But what if we could use them as low power computational building blocks? Remarkably, they can oscillate without the need of any external dc drive, and despite their stochastic nature, they can beat in unison with an external periodic signal. Here we show that the phase locking of superparamagnetic tunnel junctions can be induced and suppressed by electrical noise injection. We develop a comprehensive model giving the conditions for synchronization, and predict that it can be achieved with a total energy cost lower than 10(-13) J. Our results open the path to ultra-low power computation based on the controlled synchronization of oscillators.

References

  1. Nat Mater. 2014 Jan;13(1):11-20 - PubMed
  2. Phys Rev Lett. 2010 Jul 23;105(4):047202 - PubMed
  3. Chaos. 2003 Mar;13(1):225-38 - PubMed
  4. Phys Rev Lett. 1995 Dec 4;75(23):4157-4160 - PubMed
  5. Nat Rev Neurosci. 2011 Feb;12(2):105-18 - PubMed
  6. Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Sep;76(3 Pt 1):031122 - PubMed
  7. Phys Rev B Condens Matter. 1996 Oct 1;54(13):9353-9358 - PubMed
  8. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Jul;60(1):284-92 - PubMed
  9. Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Jan;71(1 Pt 1):011101 - PubMed
  10. Science. 2013 Jan 4;339(6115):55-9 - PubMed
  11. Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Aug;68(2 Pt 1):020101 - PubMed

Publication Types