Display options
Share it on

Nat Commun. 2016 Sep 14;7:12763. doi: 10.1038/ncomms12763.

Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

Nature communications

B D O'Shea, G Andonian, S K Barber, K L Fitzmorris, S Hakimi, J Harrison, P D Hoang, M J Hogan, B Naranjo, O B Williams, V Yakimenko, J B Rosenzweig

Affiliations

  1. Department of Physics and Astronomy, University of California, Los Angeles, Los Angeles, California 90095, USA.
  2. SLAC National Accelerator Laboratory, Menlo Park, California 94025, USA.

PMID: 27624348 PMCID: PMC5027279 DOI: 10.1038/ncomms12763

Abstract

There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

References

  1. Phys Rev Lett. 2014 Dec 31;113(26):264801 - PubMed
  2. Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1995 Oct;52(4):4576-4579 - PubMed
  3. Nature. 2013 Nov 7;503(7474):91-4 - PubMed
  4. Phys Rev Lett. 1988 Dec 12;61(24):2756-2758 - PubMed
  5. Phys Rev Lett. 2007 Apr 6;98(14):144801 - PubMed
  6. Sci Am. 2008 Feb;298(2):46-51 - PubMed
  7. Nature. 2007 Feb 15;445(7129):741-4 - PubMed
  8. Phys Rev Lett. 2015 Mar 6;114(9):098102 - PubMed
  9. Phys Rev Lett. 2013 Sep 27;111(13):134803 - PubMed
  10. Phys Rev Lett. 2012 Oct 19;109(16):164803 - PubMed
  11. Phys Rev Lett. 2012 Jun 15;108(24):244801 - PubMed
  12. Nat Commun. 2015 Mar 06;6:6369 - PubMed
  13. Nature. 2014 Nov 6;515(7525):92-5 - PubMed
  14. Phys Rev Lett. 2009 Aug 28;103(9):095003 - PubMed
  15. Phys Rev Lett. 2008 May 30;100(21):214801 - PubMed
  16. Sci Rep. 2014 Feb 25;4:4171 - PubMed

Publication Types