Display options
Share it on

Front Hum Neurosci. 2016 Jul 29;10:390. doi: 10.3389/fnhum.2016.00390. eCollection 2016.

Effects of Stimulus-Driven and Goal-Directed Attention on Prepulse Inhibition of Brain Oscillations.

Frontiers in human neuroscience

Agnès Annic, Jean-Louis Bourriez, Arnaud Delval, Perrine Bocquillon, Claire Trubert, Philippe Derambure, Kathy Dujardin

Affiliations

  1. University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Clinical Neurophysiology, Lille University Medical CenterLille, France.
  2. Department of Clinical Neurophysiology, Lille University Medical Center Lille, France.
  3. University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive Disorders Lille, France.
  4. University of Lille, INSERM U1171 - Degenerative and Vascular Cognitive DisordersLille, France; Department of Neurology and Movement Disorders, Lille University Medical CenterLille, France.

PMID: 27524966 PMCID: PMC4965466 DOI: 10.3389/fnhum.2016.00390

Abstract

OBJECTIVE: Prepulse inhibition (PPI) is an operational measure of sensory gating. PPI of cortical response to a startling pulse is known to be modulated by attention. With a time-frequency analysis, we sought to determine whether goal-directed and stimulus-driven attention differentially modulate inhibition of cortical oscillations elicited by a startling pulse.

METHODS: An electroencephalogram (EEG) was recorded in 26 healthy controls performing an active acoustic PPI paradigm. Startling stimuli were presented alone or either 400 or 1000 ms after one of three types of visual prepulse: to-be-attended (goal-directed attention), unexpected (stimulus-driven attention) or to-be-ignored (non-focused attention). We calculated the percentage PPI for the auditory event-related spectral perturbation (ERSP) of theta (4-7 Hz), alpha (8-12 Hz), beta1 (13-20 Hz) and beta2 (20-30 Hz) oscillations and changes in inter-trial coherence (ITC), a measure of phase synchronization of electroencephalographic activity.

RESULTS: At 400 ms: (i) PPI of the ERSP of alpha, theta and beta1 oscillation was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta2 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. At 1000 ms: (i) PPI of alpha oscillations was greater after an unexpected and a to-be-attended prepulse than after a to-be-ignored prepulse; and (ii) PPI of beta1 oscillations was greater after a to-be-attended than a to-be-ignored prepulse. The ITC values did not vary according to the type of prepulse.

CONCLUSIONS: In an active PPI paradigm, stimulus-driven and goal-directed attention each have differential effects on the modulation of cortical oscillations.

Keywords: attention; brain oscillations; continuous performance test; prepulse inhibition; time-frequency analysis

References

  1. J Abnorm Psychol. 1993 Nov;102(4):633-41 - PubMed
  2. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1867-72 - PubMed
  3. BMC Neurosci. 2007 Sep 18;8:75 - PubMed
  4. Int J Psychophysiol. 2001 Jan;39(2-3):197-212 - PubMed
  5. Clin Neurophysiol. 1999 Nov;110(11):1842-57 - PubMed
  6. Psychophysiology. 2004 May;41(3):401-6 - PubMed
  7. Neuroimage. 2005 Jul 15;26(4):1052-8 - PubMed
  8. Biol Psychiatry. 2003 Aug 15;54(4):474-84 - PubMed
  9. Behav Neurosci. 2009 Aug;123(4):894-904 - PubMed
  10. J Cogn Neurosci. 2008 Feb;20(2):215-25 - PubMed
  11. Brain Res Rev. 2007 Jan;53(1):63-88 - PubMed
  12. Exp Brain Res. 1993;97(1):71-82 - PubMed
  13. Annu Rev Neurosci. 1995;18:193-222 - PubMed
  14. Psychopharmacology (Berl). 2001 Jul;156(2-3):216-24 - PubMed
  15. Brain Res. 2007 Aug 13;1163:111-8 - PubMed
  16. J Neurosci. 2001 Nov 15;21(22):9053-67 - PubMed
  17. Biol Psychol. 1993 Jul;35(3):185-200 - PubMed
  18. Neurosci Lett. 2006 Jun 12;400(3):246-51 - PubMed
  19. Eur J Neurosci. 2007 Oct;26(8):2327-33 - PubMed
  20. Psychophysiology. 1993 Jul;30(4):347-58 - PubMed
  21. Behav Brain Res. 2009 Dec 28;205(2):456-67 - PubMed
  22. Psychiatry Res. 2003 Feb 15;122(2):99-113 - PubMed
  23. J Neurol Neurosurg Psychiatry. 2005 Jan;76(1):106-8 - PubMed
  24. Clin Pharmacol Ther. 1979 May;25(5 Pt 1):555-61 - PubMed
  25. Proc Natl Acad Sci U S A. 2000 Jun 20;97(13):7645-50 - PubMed
  26. Clin Neurophysiol. 2001 Apr;112(4):713-9 - PubMed
  27. Science. 2007 Mar 30;315(5820):1860-2 - PubMed
  28. Neuroimage. 2008 Sep 1;42(3):1164-77 - PubMed
  29. Psychophysiology. 2001 Jul;38(4):669-77 - PubMed
  30. Biol Psychol. 2001 May;56(2):83-111 - PubMed
  31. J Neurosci Methods. 2004 Mar 15;134(1):9-21 - PubMed
  32. Psychophysiology. 2007 Jul;44(4):627-34 - PubMed
  33. Trends Cogn Sci. 2004 May;8(5):204-10 - PubMed
  34. Biol Psychiatry. 1993 Aug 15;34(4):253-60 - PubMed
  35. Clin Neurophysiol. 2014 Aug;125(8):1576-88 - PubMed
  36. Psychiatry Res. 2013 Nov 30;214(2):169-74 - PubMed
  37. Annu Rev Neurosci. 2000;23:315-41 - PubMed
  38. Psychophysiology. 2008 Jul;45(4):632-42 - PubMed
  39. J Psychopharmacol. 2006 Jul;20(4):471-84 - PubMed
  40. Schizophr Res. 2009 Sep;113(2-3):332-8 - PubMed
  41. Psychophysiology. 2008 Mar;45(2):197-204 - PubMed
  42. Biol Psychiatry. 2007 Jul 15;62(2):148-57 - PubMed
  43. Prog Neuropsychopharmacol Biol Psychiatry. 2009 Feb 1;33(1):53-61 - PubMed
  44. Behav Processes. 2012 Jan;89(1):1-7 - PubMed
  45. Psychophysiology. 2007 Nov;44(6):839-45 - PubMed
  46. BMC Neurosci. 2012 Oct 31;13:135 - PubMed
  47. Eur J Pharmacol. 2007 Apr 10;560(2-3):176-82 - PubMed
  48. Brain Res Brain Res Rev. 1999 Apr;29(2-3):169-95 - PubMed
  49. Psychophysiology. 2005 Jul;42(4):440-6 - PubMed
  50. Science. 2002 Jan 25;295(5555):690-4 - PubMed
  51. Neuroimage. 2007 Nov 15;38(3):604-16 - PubMed
  52. Psychopharmacology (Berl). 2001 Jul;156(2-3):194-215 - PubMed
  53. Addict Behav. 1988;13(2):147-50 - PubMed
  54. Electroencephalogr Clin Neurophysiol. 1985 Sep;62(5):364-71 - PubMed
  55. Clin Neurosci. 1995;3(2):131-9 - PubMed

Publication Types