Display options
Share it on

Sci Rep. 2016 Aug 05;6:30791. doi: 10.1038/srep30791.

Large-area, continuous and high electrical performances of bilayer to few layers MoS2 fabricated by RF sputtering via post-deposition annealing method.

Scientific reports

Sajjad Hussain, Jai Singh, Dhanasekaran Vikraman, Arun Kumar Singh, Muhammad Zahir Iqbal, Muhammad Farooq Khan, Pushpendra Kumar, Dong-Chul Choi, Wooseok Song, Ki-Seok An, Jonghwa Eom, Wan-Gyu Lee, Jongwan Jung

Affiliations

  1. Graphene Research Institute, Sejong University, Seoul 143-747, Korea.
  2. Faculty of Nanotechnology &Advanced Materials Engineering and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.
  3. Dr. H. S. Gour Central University, Sagar, M.P. 470003, India.
  4. Division of Energy Systems Research, Ajou University, Suwon 443-749, Republic of Korea.
  5. Department of Physics and Graphene Research Institute, Sejong University, Seoul 143-747, Korea.
  6. Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, 10617, Taiwan.
  7. Thin Film Materials Research Group, Korea Research Institute of Chemical Technology, Daejon 305-600, Korea.
  8. National Nano Fab Center, Daejeon, Korea.

PMID: 27492282 PMCID: PMC4974610 DOI: 10.1038/srep30791

Abstract

We report a simple and mass-scalable approach for thin MoS2 films via RF sputtering combined with the post-deposition annealing process. We have prepared as-sputtered film using a MoS2 target in the sputtering system. The as-sputtered film was subjected to post-deposition annealing to improve crystalline quality at 700 °C in a sulfur and argon environment. The analysis confirmed the growth of continuous bilayer to few-layer MoS2 film. The mobility value of ~29 cm(2)/Vs and current on/off ratio on the order of ~10(4) were obtained for bilayer MoS2. The mobility increased up to ~173-181 cm(2)/Vs, respectively, for few-layer MoS2. The mobility of our bilayer MoS2 FETs is larger than any previously reported values of single to bilayer MoS2 grown on SiO2/Si substrate with a SiO2 gate oxide. Moreover, our few-layer MoS2 FETs exhibited the highest mobility value ever reported for any MoS2 FETs with a SiO2 gate oxide. It is presumed that the high mobility behavior of our film could be attributed to low charged impurities of our film and dielectric screening effect by an interfacial MoOxSiy layer. The combined preparation route of RF sputtering and post-deposition annealing process opens up the novel possibility of mass and batch production of MoS2 film.

References

  1. ACS Appl Mater Interfaces. 2010 May;2(5):1444-8 - PubMed
  2. Sci Rep. 2013;3:1866 - PubMed
  3. Nanoscale. 2012 Oct 21;4(20):6637-41 - PubMed
  4. Phys Rev B Condens Matter. 1987 Apr 15;35(12):6195-6202 - PubMed
  5. ACS Appl Mater Interfaces. 2014 Dec 10;6(23):21215-22 - PubMed
  6. Phys Chem Chem Phys. 2014 Jan 21;16(3):1008-14 - PubMed
  7. Nano Lett. 2013 Aug 14;13(8):3546-52 - PubMed
  8. J Am Chem Soc. 2005 Nov 23;127(46):16263-72 - PubMed
  9. Nano Lett. 2010 Apr 14;10(4):1271-5 - PubMed
  10. Nanoscale. 2014 Mar 7;6(5):2821-6 - PubMed
  11. J Am Chem Soc. 2013 Apr 10;135(14):5304-7 - PubMed
  12. Nano Lett. 2013 Apr 10;13(4):1852-7 - PubMed
  13. ACS Nano. 2013 Oct 22;7(10):8809-15 - PubMed
  14. Nat Nanotechnol. 2011 Mar;6(3):147-50 - PubMed
  15. Phys Rev Lett. 2010 Sep 24;105(13):136805 - PubMed
  16. Nano Lett. 2012 Jun 13;12(6):2784-91 - PubMed
  17. Nanoscale. 2015 Feb 14;7(6):2497-503 - PubMed
  18. ACS Nano. 2014 May 27;8(5):4961-8 - PubMed
  19. Angew Chem Int Ed Engl. 2014 Jan 27;53(5):1266-9 - PubMed
  20. Nano Lett. 2011 Dec 14;11(12):5111-6 - PubMed
  21. Nanoscale. 2012 Jan 21;4(2):461-6 - PubMed
  22. Nat Nanotechnol. 2013 Nov;8(11):826-30 - PubMed
  23. Nano Lett. 2012 Sep 12;12(9):4674-80 - PubMed
  24. Nanoscale. 2015 Feb 7;7(5):1688-95 - PubMed
  25. Nanotechnology. 2013 Mar 8;24(9):095202 - PubMed
  26. ACS Nano. 2014 Jun 24;8(6):6024-30 - PubMed
  27. J Phys Chem B. 2004 May 20;108(20):6197-207 - PubMed
  28. ACS Nano. 2012 Jun 26;6(6):5635-41 - PubMed
  29. Nano Lett. 2012 Mar 14;12(3):1538-44 - PubMed
  30. Adv Mater. 2013 Jan 4;25(1):109-14 - PubMed
  31. Adv Mater. 2012 May 2;24(17):2320-5 - PubMed
  32. Small. 2012 Apr 10;8(7):966-71 - PubMed

Publication Types