Display options
Share it on

Trends Hear. 2016 Sep 22;20. doi: 10.1177/2331216516662003.

Modeling the Effects of Sensorineural Hearing Loss on Sound Localization in the Median Plane.

Trends in hearing

Robert Baumgartner, Piotr Majdak, Bernhard Laback

Affiliations

  1. Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria [email protected].
  2. Acoustics Research Institute, Austrian Academy of Sciences, Vienna, Austria.

PMID: 27659486 PMCID: PMC5055367 DOI: 10.1177/2331216516662003

Abstract

Listeners use monaural spectral cues to localize sound sources in sagittal planes (along the up-down and front-back directions). How sensorineural hearing loss affects the salience of monaural spectral cues is unclear. To simulate the effects of outer-hair-cell (OHC) dysfunction and the contribution of different auditory-nerve fiber types on localization performance, we incorporated a nonlinear model of the auditory periphery into a model of sagittal-plane sound localization for normal-hearing listeners. The localization model was first evaluated in its ability to predict the effects of spectral cue modifications for normal-hearing listeners. Then, we used it to simulate various degrees of OHC dysfunction applied to different types of auditory-nerve fibers. Predicted localization performance was hardly affected by mild OHC dysfunction but was strongly degraded in conditions involving severe and complete OHC dysfunction. These predictions resemble the usually observed degradation in localization performance induced by sensorineural hearing loss. Predicted localization performance was best when preserving fibers with medium spontaneous rates, which is particularly important in view of noise-induced hearing loss associated with degeneration of this fiber type. On average across listeners, predicted localization performance was strongly related to level discrimination sensitivity of auditory-nerve fibers, indicating an essential role of this coding property for localization accuracy in sagittal planes.

© The Author(s) 2016.

Keywords: auditory deafferentation; head-related transfer function; hearing impairment; outer-hair-cell damage; vertical-plane sound localization

References

  1. J Assoc Res Otolaryngol. 2013 Apr;14(2):261-73 - PubMed
  2. J Acoust Soc Am. 1994 Feb;95(2):992-1005 - PubMed
  3. J Acoust Soc Am. 2014 Aug;136(2):791-802 - PubMed
  4. J Neurosci. 2005 Apr 6;25(14):3680-91 - PubMed
  5. J Neurosci. 2011 May 4;31(18):6759-63 - PubMed
  6. Front Psychol. 2014 Apr 23;5:319 - PubMed
  7. J Acoust Soc Am. 1978 Feb;63(2):442-55 - PubMed
  8. J Acoust Soc Am. 2003 Jan;113(1):369-88 - PubMed
  9. J Acoust Soc Am. 1997 May;101(5 Pt 1):2705-19 - PubMed
  10. Atten Percept Psychophys. 2010 Feb;72(2):454-69 - PubMed
  11. J Acoust Soc Am. 2013 Sep;134(3):2148-59 - PubMed
  12. J Assoc Res Otolaryngol. 2015 Feb;16(1):121-33 - PubMed
  13. J Am Acad Audiol. 1998 Dec;9(6):466-79 - PubMed
  14. J Acoust Soc Am. 2010 Feb;127(2):990-1001 - PubMed
  15. Hear Res. 2005 Jan;199(1-2):124-34 - PubMed
  16. J Assoc Res Otolaryngol. 2011 Feb;12(1):71-88 - PubMed
  17. J Acoust Soc Am. 2009 Nov;126(5):2390-412 - PubMed
  18. J Acoust Soc Am. 2013 Apr;133(4):2055-68 - PubMed
  19. Arch Otolaryngol Head Neck Surg. 2004 May;130(5):660-4 - PubMed
  20. J Acoust Soc Am. 1997 Feb;101(2):1050-63 - PubMed
  21. J Acoust Soc Am. 2001 Mar;109(3):1110-22 - PubMed
  22. J Neurophysiol. 2013 Aug;110(3):577-86 - PubMed
  23. J Acoust Soc Am. 2014 Jan;135(1):283-6 - PubMed
  24. Hear Res. 2013 Dec;306:76-92 - PubMed
  25. J Neurophysiol. 2011 May;105(5):2471-86 - PubMed
  26. J Acoust Soc Am. 2002 May;111(5 Pt 1):2219-36 - PubMed
  27. J Acoust Soc Am. 2005 Jul;118(1):353-63 - PubMed

Publication Types