Display options
Share it on

ChemElectroChem. 2016 Feb;3(2):247-255. doi: 10.1002/celc.201500473. Epub 2015 Nov 25.

Rechargeable Metal-Air Proton-Exchange Membrane Batteries for Renewable Energy Storage.

ChemElectroChem

Masahiro Nagao, Kazuyo Kobayashi, Yuta Yamamoto, Togo Yamaguchi, Akihide Oogushi, Takashi Hibino

Affiliations

  1. Graduate School of Environmental Studies Nagoya University Nagoya 464-8601 Japan.
  2. Institute of Materials and Systems for Sustainability Nagoya University Nagoya 464-8601 Japan.
  3. Research and Development Department Asahi Carbon Co., Ltd. Niigata 950-0883 Japan.
  4. Engine Component Department Isuzu Motors Limited Kanagawa 252-0881 Japan.

PMID: 27525212 PMCID: PMC4964886 DOI: 10.1002/celc.201500473

Abstract

Rechargeable proton-exchange membrane batteries that employ organic chemical hydrides as hydrogen-storage media have the potential to serve as next-generation power sources; however, significant challenges remain regarding the improvement of the reversible hydrogen-storage capacity. Here, we address this challenge through the use of metal-ion redox couples as energy carriers for battery operation. Carbon, with a suitable degree of crystallinity and surface oxygenation, was used as an effective anode material for the metal redox reactions. A Sn

Keywords: batteries; energy storage; fuel cells; proton-exchange membranes; redox chemistry

References

  1. Angew Chem Int Ed Engl. 2014 Dec 15;53(51):14235-9 - PubMed
  2. J Phys Condens Matter. 2011 Jun 15;23(23):234110 - PubMed
  3. Angew Chem Int Ed Engl. 2015 Sep 1;54(36):10530-4 - PubMed
  4. ChemElectroChem. 2016 Feb;3(2):247-255 - PubMed
  5. Phys Chem Chem Phys. 2006 Apr 14;8(14):1724-30 - PubMed
  6. Chem Soc Rev. 2014 Nov 21;43(22):7746-86 - PubMed
  7. Angew Chem Int Ed Engl. 2009;48(36):6608-30 - PubMed
  8. Sci Rep. 2015 Jan 20;5:7903 - PubMed
  9. Chem Soc Rev. 2009 Sep;38(9):2520-31 - PubMed
  10. Chem Soc Rev. 2009 Jan;38(1):73-82 - PubMed

Publication Types