Display options
Share it on

J Cardiovasc Magn Reson. 2016 Sep 22;18(1):61. doi: 10.1186/s12968-016-0281-y.

Myocardial late gadolinium enhancement is associated with clinical presentation in Duchenne muscular dystrophy carriers.

Journal of cardiovascular magnetic resonance : official journal of the Society for Cardiovascular Magnetic Resonance

Paul Wexberg, Marion Avanzini, Julia Mascherbauer, Stefan Pfaffenberger, Birgit Freudenthaler, Reginald Bittner, Günther Bernert, Franz Weidinger

Affiliations

  1. 2nd Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria. [email protected].
  2. SVA-Gesundheitszentrum, Hartmanngasse 2b, Vienna, A-1051, Austria. [email protected].
  3. 2nd Medical Department, Krankenanstalt Rudolfstiftung, Vienna, Austria.
  4. Division of Cardiology, Department Of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
  5. Neuromuscular Research Department, Center of Anatomy & Cell Biology, Medical University of Vienna, Vienna, Austria.
  6. Gottfried von Preyer Children Hospital, Vienna, Austria.

PMID: 27660108 PMCID: PMC5034448 DOI: 10.1186/s12968-016-0281-y

Abstract

BACKGROUND: Duchenne muscular dystrophy (DMD) is an X-linked recessive disease that occurs in males leading to immobility and death in early adulthood. Female carriers of DMD are generally asymptomatic, yet frequently develop dilated cardiomyopathy. This study aims to detect early cardiac manifestation in DMD using cardiovascular magnetic resonance (CMR) and to evaluate its association with clinical symptoms.

METHODS: Clinical assessment of DMD carriers included six minutes walk tests (6MWT), blood analysis, electrocardiography, echocardiography, and CMR using FLASH sequences to detect late gadolinium enhancement (LGE). T1-mapping using the Modified Look-Locker Inversion recovery (MOLLI) sequence was performed quantify extracellular volume (ECV).

RESULTS: Of 20 carriers (age 39.47 ± 12.96 years) 17 (89.5 %) were clinically asymptomatic. ECV was mildly elevated (29.79 ± 2.92 %) and LGE was detected in nine cases (45 %). LGE positive carriers had lower left ventricular ejection fraction in CMR (64.36 ± 5.78 vs. 56.67 ± 6.89 %, p = 0.014), higher bothCK (629.89 ± 317.48 vs. 256.18 ± 109.10 U/l, p = 0.002) and CK-MB (22.13 ± 5.25 vs. 12.11 ± 2.21 U/l, p = 0.001), as well as shorter walking distances during the 6MWT (432.44 ± 96.72 vs. 514.91 ± 66.80 m, p = 0.037). 90.9 % of subjects without LGE had normal pro-BNP, whereas in 66.7 % of those presenting LGE pro-BNP was elevated (p = 0.027). All individuals without LGE were in the NYHA class I, whereas all those in NYHA classes II and III showed positive for LGE (p = 0.066).

CONCLUSIONS: Myocardial involvement shown as LGE in CMR occurs in a substantial number of DMD carriers; it is associated with clinical and morphometric signs of incipient heart failure. LGE is thus a sensitive parameter for the early diagnosis of cardiomyopathy in DMD carriers.

TRIAL REGISTRATION: Clinicaltrials.gov, NCT01712152 Trial registration: October 19, 2012. First patient enrolled: September 27, 2012 (retrospectively registered).

Keywords: Cardiomyopathy; Cardiovascular magnetic resonance; Duchenne muscular dystrophy; T1-mapping

References

  1. Lancet. 1999 Jun 19;353(9170):2116-9 - PubMed
  2. J Membr Biol. 2000 Jul 15;176(2):169-74 - PubMed
  3. Trends Cardiovasc Med. 2000 Aug;10(6):268-72 - PubMed
  4. Neuromuscul Disord. 2003 Feb;13(2):166-72 - PubMed
  5. Rev Neurol (Paris). 2003 Sep;159(8-9):775-80 - PubMed
  6. Pediatrics. 2005 Dec;116(6):1569-73 - PubMed
  7. J Muscle Res Cell Motil. 2006;27(5-7):375-86 - PubMed
  8. Muscle Nerve. 2007 Oct;36(4):424-35 - PubMed
  9. Magn Reson Med. 2007 Jul;58(1):34-40 - PubMed
  10. Am Heart J. 2007 Sep;154(3):596-602 - PubMed
  11. Int J Cardiovasc Imaging. 2009 Jan;25(1):57-63 - PubMed
  12. Int J Cardiol. 2010 Feb 4;138(3):302-5 - PubMed
  13. J Cardiovasc Magn Reson. 2008 Nov 04;10:50 - PubMed
  14. J Am Coll Cardiol. 2008 Nov 4;52(19):1574-80 - PubMed
  15. J Magn Reson Imaging. 2009 Oct;30(4):876-7 - PubMed
  16. Eur J Radiol. 2011 Oct;80(1):115-9 - PubMed
  17. Int J Cardiol. 2011 Jan 21;146(2):231-2 - PubMed
  18. J Magn Reson Imaging. 2011 Feb;33(2):275-86 - PubMed
  19. Handb Clin Neurol. 2011;101:11-39 - PubMed
  20. Circ Cardiovasc Imaging. 2011 Nov;4(6):693-702 - PubMed
  21. Circulation. 2012 Sep 4;126(10):1206-16 - PubMed
  22. J Cardiovasc Magn Reson. 2012 Sep 10;14:63 - PubMed
  23. J Cardiovasc Magn Reson. 2014 Jul 09;16:45 - PubMed
  24. Lancet Neurol. 2015 Feb;14(2):153-61 - PubMed
  25. J Am Heart Assoc. 2015 Mar 26;4(4):null - PubMed
  26. Circulation. 2015 May 5;131(18):1590-8 - PubMed
  27. Pediatr Cardiol. 2015 Oct;36(7):1495-501 - PubMed
  28. Eur Heart J Cardiovasc Imaging. 2016 Mar;17(3):326-33 - PubMed
  29. World J Cardiol. 2015 Jul 26;7(7):410-4 - PubMed
  30. JACC Cardiovasc Imaging. 2016 Jan;9(1):14-23 - PubMed
  31. J Am Soc Echocardiogr. 2016 Apr;29(4):277-314 - PubMed
  32. Eur Heart J. 2016 Jul 14;37(27):2129-2200 - PubMed
  33. Nature. 1988 Jun 30;333(6176):861-3 - PubMed
  34. Hum Genet. 1995 Aug;96(2):167-76 - PubMed
  35. Baillieres Clin Neurol. 1994 Aug;3(2):407-30 - PubMed
  36. Brain Pathol. 1996 Jan;6(1):49-61 - PubMed
  37. Neurobiol Dis. 1998 Jul;5(1):3-15 - PubMed

Publication Types