Display options
Share it on

Chemistry. 2016 Sep 05;22(37):13265-74. doi: 10.1002/chem.201602530. Epub 2016 Aug 05.

Low Molecular Weight Norbornadiene Derivatives for Molecular Solar-Thermal Energy Storage.

Chemistry (Weinheim an der Bergstrasse, Germany)

Maria Quant, Anders Lennartson, Ambra Dreos, Mikael Kuisma, Paul Erhart, Karl Börjesson, Kasper Moth-Poulsen

Affiliations

  1. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden.
  2. Department of Physics, Chalmers University of Technology, Sweden.
  3. Department of Chemistry and Molecular Biology, University of Gothenburg, Sweden.
  4. Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemigården 4, 412 96, Gothenburg, Sweden. [email protected].

PMID: 27492997 PMCID: PMC5096010 DOI: 10.1002/chem.201602530

Abstract

Molecular solar-thermal energy storage systems are based on molecular switches that reversibly convert solar energy into chemical energy. Herein, we report the synthesis, characterization, and computational evaluation of a series of low molecular weight (193-260 g mol(-1) ) norbornadiene-quadricyclane systems. The molecules feature cyano acceptor and ethynyl-substituted aromatic donor groups, leading to a good match with solar irradiation, quantitative photo-thermal conversion between the norbornadiene and quadricyclane, as well as high energy storage densities (396-629 kJ kg(-1) ). The spectroscopic properties and energy storage capability have been further evaluated through density functional theory calculations, which indicate that the ethynyl moiety plays a critical role in obtaining the high oscillator strengths seen for these molecules.

© 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

Keywords: donor-acceptor systems; energy conversion; molecular switches; norbornadiene; quadricyclane

References

  1. J Am Chem Soc. 2010 Jul 7;132(26):9165-74 - PubMed
  2. Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7692-6 - PubMed
  3. Angew Chem Int Ed Engl. 2012 Jul 27;51(31):7812-6 - PubMed
  4. Chem Commun (Camb). 2014 May 25;50(40):5330-2 - PubMed
  5. Chem Soc Rev. 2012 Mar 7;41(5):1809-25 - PubMed
  6. J Org Chem. 1996 Sep 6;61(18):6162-6165 - PubMed
  7. Dalton Trans. 2016 Jun 7;45(21):8740-4 - PubMed
  8. ChemSusChem. 2016 Jun 22;9(12):1424-32 - PubMed
  9. Phys Chem Chem Phys. 2016 Jun 1;18(22):14795-804 - PubMed
  10. Chem Commun (Camb). 2014 Dec 25;50(99):15803-6 - PubMed
  11. Phys Rev B Condens Matter. 1988 Jan 15;37(2):785-789 - PubMed
  12. J Phys Chem C Nanomater Interfaces. 2016 Feb 25;120(7):3635-3645 - PubMed
  13. Chemistry. 2016 Sep 5;22(37):13265-74 - PubMed
  14. Phys Chem Chem Phys. 2014 Oct 21;16(39):21172-82 - PubMed
  15. Photochem Photobiol Sci. 2007 Apr;6(4):361-4 - PubMed
  16. ChemSusChem. 2016 Jul 21;9(14):1786-94 - PubMed

Publication Types