Display options
Share it on

Front Neurosci. 2016 Sep 08;10:404. doi: 10.3389/fnins.2016.00404. eCollection 2016.

Capacitive Feedthroughs for Medical Implants.

Frontiers in neuroscience

Sven Grob, Peter A Tass, Christian Hauptmann

Affiliations

  1. Research Center Juelich, Institute of Neuroscience and Medicine 7 - Neuromodulation Juelich, Germany.
  2. Research Center Juelich, Institute of Neuroscience and Medicine 7 - NeuromodulationJuelich, Germany; Department of Neuromodulation, University of CologneCologne, Germany; Department of Neurosurgery, Stanford UniversityStanford, CA, USA.

PMID: 27660602 PMCID: PMC5014865 DOI: 10.3389/fnins.2016.00404

Abstract

Important technological advances in the last decades paved the road to a great success story for electrically stimulating medical implants, including cochlear implants or implants for deep brain stimulation. However, there are still many challenges in reducing side effects and improving functionality and comfort for the patient. Two of the main challenges are the wish for smaller implants on one hand, and the demand for more stimulation channels on the other hand. But these two aims lead to a conflict of interests. This paper presents a novel design for an electrical feedthrough, the so called capacitive feedthrough, which allows both reducing the size, and increasing the number of included channels. Capacitive feedthroughs combine the functionality of a coupling capacitor and an electrical feedthrough within one and the same structure. The paper also discusses the progress and the challenges of the first produced demonstrators. The concept bears a high potential in improving current feedthrough technology, and could be applied on all kinds of electrical medical implants, even if its implementation might be challenging.

Keywords: additive manufacturing; barium titanate; capacitive feedthrough; casing; coupling capacitor; electrical feedthrough; medical implant

References

  1. Biol Cybern. 2006 Jan;94(1):58-66 - PubMed
  2. J Biomed Mater Res. 1981 Jan;15(1):103-10 - PubMed
  3. Brain Stimul. 2015 Jan-Feb;8(1):21-6 - PubMed
  4. IEEE Trans Biomed Eng. 1976 Jul;23(4):281-5 - PubMed
  5. Ann Neurol. 2012 Nov;72(5):816-20 - PubMed
  6. Conf Proc IEEE Eng Med Biol Soc. 2012;2012:2796-9 - PubMed
  7. J Neural Eng. 2013 Aug;10(4):045003 - PubMed
  8. Lancet Neurol. 2009 Jan;8(1):67-81 - PubMed
  9. Clin Neurophysiol. 2004 Nov;115(11):2431-41 - PubMed
  10. Neurology. 2014 Sep 23;83(13):1163-9 - PubMed
  11. Arch Neurol. 2011 Feb;68(2):165 - PubMed
  12. Mater Sci Eng C Mater Biol Appl. 2014 Jun 1;39:143-9 - PubMed
  13. IEEE Trans Biomed Circuits Syst. 2007 Sep;1(3):172-83 - PubMed
  14. Mov Disord. 2014 Nov;29(13):1679-84 - PubMed
  15. Cell. 2013 Sep 12;154(6):1175-7 - PubMed
  16. Front Neuroeng. 2011 Dec 08;4:15 - PubMed
  17. Stereotact Funct Neurosurg. 2006;84(5-6):248-51 - PubMed
  18. IEEE Trans Biomed Circuits Syst. 2010 Jun;4(3):162-70 - PubMed
  19. J Speech Lang Hear Res. 1997 Oct;40(5):1201-15 - PubMed
  20. J Biomed Mater Res A. 2006 Nov;79(2):282-8 - PubMed
  21. J Neural Eng. 2009 Dec;6(6):066003 - PubMed
  22. Indian Pacing Electrophysiol J. 2004 Oct 01;4(4):201-12 - PubMed
  23. Conf Proc IEEE Eng Med Biol Soc. 2010;2010:1585-8 - PubMed
  24. Artif Organs. 2009 Mar;33(3):208-20 - PubMed
  25. IEEE J Solid-State Circuits. 2013 Sep;48(9):2203-2216 - PubMed
  26. Biomater Med Devices Artif Organs. 1977;5(3):267-76 - PubMed
  27. Nature. 2012 May 16;485(7398):372-5 - PubMed
  28. J Neural Eng. 2011 Apr;8(2):025027 - PubMed
  29. J Biomater Appl. 2014 Jul;29(1):104-12 - PubMed
  30. J Neurosci Methods. 2008 Jun 30;171(2):248-52 - PubMed
  31. Acta Otolaryngol. 1999;119(6):674-84 - PubMed
  32. Conf Proc IEEE Eng Med Biol Soc. 2009;2009:5518-21 - PubMed

Publication Types