Display options
Share it on

Nat Commun. 2016 Aug 16;7:12442. doi: 10.1038/ncomms12442.

Blocking transport resonances via Kondo many-body entanglement in quantum dots.

Nature communications

Michael Niklas, Sergey Smirnov, Davide Mantelli, Magdalena Margańska, Ngoc-Viet Nguyen, Wolfgang Wernsdorfer, Jean-Pierre Cleuziou, Milena Grifoni

Affiliations

  1. Institute for Theoretical Physics, University of Regensburg, 93040 Regensburg, Germany.
  2. Institut Néel, CNRS and Université Grenoble Alpes, 38042 Grenoble, France.
  3. INAC-SPSMS, CEA and Université Grenoble Alpes, 38054 Grenoble, France.

PMID: 27526870 PMCID: PMC4990698 DOI: 10.1038/ncomms12442

Abstract

Many-body entanglement is at the heart of the Kondo effect, which has its hallmark in quantum dots as a zero-bias conductance peak at low temperatures. It signals the emergence of a conducting singlet state formed by a localized dot degree of freedom and conduction electrons. Carbon nanotubes offer the possibility to study the emergence of the Kondo entanglement by tuning many-body correlations with a gate voltage. Here we show another side of Kondo correlations, which counterintuitively tend to block conduction channels: inelastic co-tunnelling lines in the magnetospectrum of a carbon nanotube strikingly disappear when tuning the gate voltage. Considering the global SU(2) ⊗ SU(2) symmetry of a nanotube coupled to leads, we find that only resonances involving flips of the Kramers pseudospins, associated to this symmetry, are observed at temperatures and voltages below the corresponding Kondo scale. Our results demonstrate the robust formation of entangled many-body states with no net pseudospin.

References

  1. Phys Rev Lett. 2013 Sep 27;111(13):136803 - PubMed
  2. Nature. 2000 Nov 16;408(6810):342-6 - PubMed
  3. Phys Rev Lett. 2012 Aug 24;109(8):086602 - PubMed
  4. Phys Rev Lett. 2012 Jan 27;108(4):046803 - PubMed
  5. Phys Rev Lett. 2008 Dec 12;101(24):246805 - PubMed
  6. Phys Rev Lett. 2012 Apr 27;108(17):176802 - PubMed
  7. Nature. 2005 Mar 24;434(7032):484-8 - PubMed
  8. Nat Commun. 2013;4:1573 - PubMed
  9. Phys Rev Lett. 2005 Apr 22;94(15):156802 - PubMed
  10. Phys Rev Lett. 2005 Aug 5;95(6):067204 - PubMed
  11. Phys Rev Lett. 2008 Feb 29;100(8):086809 - PubMed
  12. Nature. 2008 Mar 27;452(7186):448-52 - PubMed
  13. Nat Mater. 2005 Oct;4(10):745-9 - PubMed
  14. Phys Rev Lett. 2003 Jan 17;90(2):026602 - PubMed

Publication Types