Display options
Share it on

Sci Rep. 2016 Aug 16;6:31670. doi: 10.1038/srep31670.

Tailoring particle translocation via dielectrophoresis in pore channels.

Scientific reports

Shoji Tanaka, Makusu Tsutsui, Hu Theodore, He Yuhui, Akihide Arima, Tetsuro Tsuji, Kentaro Doi, Satoyuki Kawano, Masateru Taniguchi, Tomoji Kawai

Affiliations

  1. The Institute of Scientific and Industrial Research, Osaka University, Ibaraki, Osaka 567-0047, Japan.
  2. Department of Mechanical Science and Bioengineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
  3. School of Optical and Electronic Information, Huazhong University of Science and Technology, Luo Yu Road, Wuhan 430074, China.

PMID: 27527126 PMCID: PMC4985646 DOI: 10.1038/srep31670

Abstract

Understanding and controlling electrophoretic motions of nanoscopic objects in fluidic channels are a central challenge in developing nanopore technology for molecular analyses. Although progress has been made in slowing the translocation velocity to meet the requirement for electrical detections of analytes via picoampere current measurements, there exists no method useful for regulating particle flows in the transverse directions. Here, we report the use of dielectrophoresis to manipulate the single-particle passage through a solid-state pore. We created a trap field by applying AC voltage between electrodes embedded in a low-aspect-ratio micropore. We demonstrated a traffic control of particles to go through center or near side surface via the voltage frequency. We also found enhanced capture efficiency along with faster escaping speed of particles by virtue of the AC-mediated electroosmosis. This method is compatible with nanopore sensing and would be widely applied for reducing off-axis effects to achieve single-molecule identification.

References

  1. Nat Nanotechnol. 2015 Dec;10(12):1070-6 - PubMed
  2. Chem Soc Rev. 2013 Jan 7;42(1):15-28 - PubMed
  3. Nat Nanotechnol. 2010 Feb;5(2):160-5 - PubMed
  4. Nat Nanotechnol. 2016 Feb;11(2):127-36 - PubMed
  5. Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Aug;66(2 Pt 2):026305 - PubMed
  6. ACS Nano. 2011 Jul 26;5(7):5509-18 - PubMed
  7. Nat Biotechnol. 2008 Oct;26(10):1146-53 - PubMed
  8. Nat Nanotechnol. 2013 Dec;8(12):939-45 - PubMed
  9. Nanotechnology. 2015 May 8;26(18):182502 - PubMed
  10. Nanotechnology. 2015 Feb 13;26(6):065502 - PubMed
  11. Nat Nanotechnol. 2010 Apr;5(4):286-90 - PubMed
  12. Nat Nanotechnol. 2013 Dec;8(12):946-51 - PubMed
  13. Nanotechnology. 2011 Aug 5;22(31):315101 - PubMed
  14. Nano Lett. 2012 Aug 8;12(8):4117-23 - PubMed
  15. Sci Rep. 2012;2:394 - PubMed
  16. J Gen Physiol. 1975 Oct;66(4):531-2 - PubMed
  17. Nat Nanotechnol. 2014 Oct;9(10):743 - PubMed
  18. Nat Biotechnol. 2012 Apr 10;30(4):326-8 - PubMed
  19. Nat Nanotechnol. 2016 Feb;11(2):117-26 - PubMed
  20. Anal Chem. 1998 May 1;70(9):1909-15 - PubMed
  21. ACS Nano. 2011 Aug 23;5(8):6714-25 - PubMed
  22. Nano Lett. 2006 Apr;6(4):779-82 - PubMed
  23. Nanotechnology. 2015 Feb 20;26(7):074004 - PubMed
  24. J Phys Condens Matter. 2012 Apr 25;24(16):164208 - PubMed
  25. Nat Commun. 2016 Jan 06;7:10217 - PubMed
  26. Nat Nanotechnol. 2011 Apr;6(4):253-60 - PubMed
  27. ACS Nano. 2014 Dec 23;8(12):11994-2003 - PubMed
  28. Proc Natl Acad Sci U S A. 2011 Jun 7;108(23 ):9326-30 - PubMed
  29. Biomicrofluidics. 2010 Jun 29;4(2):null - PubMed
  30. Sensors (Basel). 2014 Apr 03;14(4):6356-69 - PubMed
  31. Angew Chem Int Ed Engl. 2013 Dec 9;52(50):13154-61 - PubMed
  32. Electrophoresis. 2013 Apr;34(7):1085-96 - PubMed
  33. ACS Nano. 2016 Jan 26;10(1):803-9 - PubMed
  34. J R Soc Interface. 2011 Oct 7;8(63):1369-78 - PubMed

Publication Types