Display options
Share it on

J Neuroeng Rehabil. 2016 Sep 23;13(1):84. doi: 10.1186/s12984-016-0188-8.

Identifying candidates for targeted gait rehabilitation after stroke: better prediction through biomechanics-informed characterization.

Journal of neuroengineering and rehabilitation

Louis N Awad, Darcy S Reisman, Ryan T Pohlig, Stuart A Binder-Macleod

Affiliations

  1. Department of Physical Therapy and Athletic Training, College of Health and Rehabilitation Sciences: Sargent College, Boston University, Boston, MA, 02215, USA. [email protected].
  2. Wyss Institute For Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA. [email protected].
  3. Department of Physical Therapy, University of Delaware, Newark, DE, 19713, USA.
  4. Graduate Program in Biomechanics and Movement Science, University of Delaware, Newark, DE, 19713, USA.
  5. Delaware Clinical and Translational Research ACCEL Program, Newark, DE, 19713, USA.
  6. Biostatistics Core Facility, University of Delaware, Newark, DE, 19713, USA.

PMID: 27663199 PMCID: PMC5035477 DOI: 10.1186/s12984-016-0188-8

Abstract

BACKGROUND: Walking speed has been used to predict the efficacy of gait training; however, poststroke motor impairments are heterogeneous and different biomechanical strategies may underlie the same walking speed. Identifying which individuals will respond best to a particular gait rehabilitation program using walking speed alone may thus be limited. The objective of this study was to determine if, beyond walking speed, participants' baseline ability to generate propulsive force from their paretic limbs (paretic propulsion) influences the improvements in walking speed resulting from a paretic propulsion-targeting gait intervention.

METHODS: Twenty seven participants >6 months poststroke underwent a 12-week locomotor training program designed to target deficits in paretic propulsion through the combination of fast walking with functional electrical stimulation to the paretic ankle musculature (FastFES). The relationship between participants' baseline usual walking speed (UWS

RESULTS: UWS

CONCLUSIONS: Characterizing participants based on both their walking speed and ability to generate paretic propulsion is a markedly better approach to predicting walking recovery following targeted gait rehabilitation than using walking speed alone.

Keywords: Biomechanics; Efficacy; Electrical stimulation; FES; Gait; Locomotion; Physical Therapy; Prediction; Prognostic; Rehabilitation; Stroke; Walking

References

  1. Int J Rehabil Res. 1991;14(3):246-50 - PubMed
  2. J Geriatr Phys Ther. 2009;32(2):46-9 - PubMed
  3. Stroke. 2007 Jul;38(7):2096-100 - PubMed
  4. J Neuroeng Rehabil. 2016 Jan 15;13:2 - PubMed
  5. Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):649-60 - PubMed
  6. J Biomech. 2016 Feb 8;49(3):388-95 - PubMed
  7. Neurorehabil Neural Repair. 2015 Jun;29(5):416-23 - PubMed
  8. Phys Ther. 2010 Feb;90(2):196-208 - PubMed
  9. J Physiother. 2014 Jun;60(2):97-101 - PubMed
  10. Arch Phys Med Rehabil. 1991 Apr;72(5):309-14 - PubMed
  11. Stroke. 1995 Jun;26(6):982-9 - PubMed
  12. Arch Phys Med Rehabil. 2014 May;95(5):840-8 - PubMed
  13. J Neuroeng Rehabil. 2015 Apr 18;12 :40 - PubMed
  14. J Neurol Phys Ther. 2012 Mar;36(1):38-44 - PubMed
  15. Arch Phys Med Rehabil. 2007 Jan;88(1):43-9 - PubMed
  16. J Neurol. 2014 Jun;261(6):1178-86 - PubMed
  17. Arch Phys Med Rehabil. 1996 Oct;77(10):1074-82 - PubMed
  18. Hum Mov Sci. 2015 Feb;39:212-21 - PubMed
  19. Clin Biomech (Bristol, Avon). 2012 Dec;27(10 ):1017-22 - PubMed
  20. Arch Phys Med Rehabil. 2003 Aug;84(8):1185-93 - PubMed
  21. Clin Biomech (Bristol, Avon). 2012 Nov;27(9):887-92 - PubMed
  22. Arch Phys Med Rehabil. 2016 Mar;97(3):493-6 - PubMed
  23. J Neurosci Methods. 2014 Jul 15;231:18-21 - PubMed
  24. Clin Neurophysiol. 2016 Mar;127(3):1837-44 - PubMed
  25. Arch Phys Med Rehabil. 2013 Dec;94(12):2471-7 - PubMed
  26. Arch Phys Med Rehabil. 2007 Jan;88(1):115-9 - PubMed
  27. Gait Posture. 2010 Oct;32(4):451-6 - PubMed
  28. Neurorehabil Neural Repair. 2016 Aug;30(7):661-70 - PubMed
  29. BMC Neurol. 2013 Oct 07;13:141 - PubMed
  30. Neurorehabil Neural Repair. 2015 Jul;29(6):499-508 - PubMed
  31. Neurorehabil Neural Repair. 2007 Mar-Apr;21(2):137-51 - PubMed
  32. Neurorehabil Neural Repair. 2011 Sep;25(7):636-44 - PubMed
  33. Clin Biomech (Bristol, Avon). 2014 Jan;29(1):68-74 - PubMed
  34. Arch Phys Med Rehabil. 2013 May;94(5):856-62 - PubMed
  35. J Rehabil Res Dev. 2014;51(1):39-50 - PubMed
  36. Neurorehabil Neural Repair. 2008 Nov-Dec;22(6):672-5 - PubMed
  37. Arch Phys Med Rehabil. 2007 Sep;88(9):1127-35 - PubMed
  38. Circulation. 2010 Feb 23;121(7):e46-e215 - PubMed

Publication Types

Grant support