Display options
Share it on

Nanoscale Res Lett. 2016 Dec;11(1):427. doi: 10.1186/s11671-016-1644-x. Epub 2016 Sep 23.

A Nanofluidic Biosensor Based on Nanoreplica Molding Photonic Crystal.

Nanoscale research letters

Wang Peng, Youping Chen, Wu Ai, Dailin Zhang

Affiliations

  1. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
  2. Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  3. Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  4. School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China. [email protected].

PMID: 27664018 PMCID: PMC5035292 DOI: 10.1186/s11671-016-1644-x

Abstract

A nanofluidic biosensor based on nanoreplica molding photonic crystal (PC) was proposed. UV epoxy PC was fabricated by nanoreplica molding on a master PC wafer. The nanochannels were sealed between the gratings on the PC surface and a taped layer. The resonance wavelength of PC-based nanofluidic biosensor was used for testing the sealing effect. According to the peak wavelength value of the sensor, an initial label-free experiment was realized with R6g as the analyte. When the PC-based biosensor was illuminated by a monochromatic light source with a specific angle, the resonance wavelength of the sensor will match with the light source and amplified the electromagnetic field. The amplified electromagnetic field was used to enhance the fluorescence excitation result. The enhancement effect was used for enhancing fluorescence excitation and emission when matched with the resonance condition. Alexa Fluor 635 was used as the target dye excited by 637-nm laser source on a configured photonic crystal enhanced fluorescence (PCEF) setup, and an initial PCEF enhancement factor was obtained.

Keywords: Nanochannels; Nanoreplica molding; Optofluidic biosensor; Photonic crystals

References

  1. Nanoscale Res Lett. 2014 Mar 25;9(1):147 - PubMed
  2. Sensors (Basel). 2015 Aug 28;15(9):21613-35 - PubMed
  3. Biosens Bioelectron. 2015 Dec 15;74:815-22 - PubMed
  4. J Am Chem Soc. 2002 Sep 4;124(35):10596-604 - PubMed
  5. Analyst. 2014 Nov 21;139(22):5954-63 - PubMed
  6. Anal Chem. 2015 Feb 3;87(3):1999-2006 - PubMed
  7. Nanoscale Res Lett. 2014 May 06;9(1):212 - PubMed
  8. Small. 2011 Mar 7;7(5):675-82 - PubMed
  9. Biosens Bioelectron. 2006 Jun 15;21(12):2217-23 - PubMed
  10. Nanoscale Res Lett. 2014 Aug 21;9(1):420 - PubMed
  11. Nano Lett. 2010 Jun 9;10(6):2058-63 - PubMed
  12. Philos Trans A Math Phys Eng Sci. 2012 May 28;370(1967):2269-303 - PubMed
  13. Nanoscale Res Lett. 2015 May 01;10:205 - PubMed
  14. Anal Chem. 2009 Jun 1;81(11):4308-11 - PubMed
  15. Lab Chip. 2007 May;7(5):550-6 - PubMed
  16. Conf Proc IEEE Eng Med Biol Soc. 2014;2014:2069-72 - PubMed
  17. Biosens Bioelectron. 2015 Mar 15;65:274-80 - PubMed
  18. Adv Mater. 2013 Nov 13;25(42):6064-8 - PubMed
  19. Plant Physiol. 2015 Mar;167(3):639-49 - PubMed
  20. Nanoscale Res Lett. 2013 May 15;8(1):229 - PubMed
  21. Nanoscale Res Lett. 2015 Apr 25;10:198 - PubMed
  22. Nanoscale Res Lett. 2015 Dec;10(1):1046 - PubMed
  23. Nanoscale Res Lett. 2012 Aug 09;7(1):449 - PubMed
  24. Nat Biotechnol. 2012 Aug;30(8):771-6 - PubMed
  25. Phys Rev Lett. 1987 May 18;58(20):2059-2062 - PubMed

Publication Types