Display options
Share it on

J Neuroinflammation. 2016 Sep 23;13(1):252. doi: 10.1186/s12974-016-0724-2.

CXCL12-induced neurotoxicity critically depends on NMDA receptor-gated and L-type Ca.

Journal of neuroinflammation

Ana B Sanchez, Kathryn E Medders, Ricky Maung, Paloma Sánchez-Pavón, Daniel Ojeda-Juárez, Marcus Kaul

Affiliations

  1. Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA.
  2. Present address: UC San Diego Health, 200 W. Arbor Drive #8765, San Diego, CA, 92103, USA.
  3. Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, Bldg. 10, La Jolla, CA, 92037, USA. [email protected].
  4. Department of Psychiatry, University of California, San Diego, 9500 Gilman Drive, San Diego, CA, 92093, USA. [email protected].

PMID: 27664068 PMCID: PMC5035480 DOI: 10.1186/s12974-016-0724-2

Abstract

BACKGROUND: The chemokine receptor CXCR4 (CD184) and its natural ligand CXCL12 contribute to many physiological processes, including decisions about cell death and survival in the central nervous system. In addition, CXCR4 is a co-receptor for human immunodeficiency virus (HIV)-1 and mediates the neurotoxicity of the viral envelope protein gp120. However, we previously observed that CXCL12 also causes toxicity in cerebrocortical neurons but the cellular mechanism remained incompletely defined.

METHODS: Primary neuronal-glial cerebrocortical cell cultures from rat were exposed to a neurotoxicity-inducing CXCL12 concentration for different times and the activity of the stress-associated mitogen-activated protein kinase p38 (p38 MAPK) was assessed using an in vitro kinase assay. Neurotoxicity of CXCL12 and cellular localization of p38 MAPK was analyzed by immunofluorescence microscopy. Pharmacological inhibition of NMDA-type glutamate receptor-gated ion channels (NMDAR) of L-type Ca

RESULTS: Here, we show that a neurotoxic amount of CXCL12 triggers a significant increase of endogenous p38 MAPK activity in cerebrocortical cells. Immunofluorescence and Western blotting experiments with mixed neuronal-glial and neuron-depleted glial cerebrocortical cells revealed that the majority of active/phosphorylated p38 MAPK was located in neurons. Blockade of NMDAR-gated ion channels or L-type Ca

CONCLUSIONS: Our findings link CXCL12-induced neuronal death to the regulation of NMDAR-gated ion channels and L-type Ca

Keywords: CXCL12; CXCR4; Calcium channel; Cell death; Immunofluorescence microscopy; Inhibitors; Kinase activity; Neurotoxicity; p38 MAPK

References

  1. Nat Neurosci. 2007 Apr;10(4):436-43 - PubMed
  2. Cell Death Differ. 2008 Oct;15(10):1663-72 - PubMed
  3. J Immunol. 2010 Oct 15;185(8):4883-95 - PubMed
  4. Epilepsia. 1990 Jul-Aug;31(4):382-90 - PubMed
  5. Curr HIV Res. 2006 Jul;4(3):307-18 - PubMed
  6. Cell Death Differ. 2007 Feb;14 (2):296-305 - PubMed
  7. Trends Immunol. 2004 Jun;25(6):306-14 - PubMed
  8. Science. 1991 Dec 6;254(5037):1515-8 - PubMed
  9. J Neuropathol Exp Neurol. 2003 Jun;62(6):617-26 - PubMed
  10. J Biol Chem. 2007 Mar 9;282(10):7154-63 - PubMed
  11. Arzneimittelforschung. 1982;32(4):338-46 - PubMed
  12. Eur J Neurosci. 1995 Dec 1;7(12):2502-7 - PubMed
  13. J Neurosci. 1999 Nov 15;19(22):9705-15 - PubMed
  14. J Virol. 1999 Feb;73(2):897-906 - PubMed
  15. Front Neuroendocrinol. 2001 Jul;22(3):147-84 - PubMed
  16. J Neurosci. 2008 Nov 12;28(46):11792-5 - PubMed
  17. Exp Biol Med (Maywood). 2011 Dec;236(12):1413-9 - PubMed
  18. Biochem Biophys Res Commun. 2005 Nov 4;336(4):1214-20 - PubMed
  19. Proc Natl Acad Sci U S A. 2006 Dec 12;103(50):19182-7 - PubMed
  20. Int Rev Neurobiol. 2014;118:105-28 - PubMed
  21. Glia. 2006 Nov 1;54(6):619-29 - PubMed
  22. Anticancer Agents Med Chem. 2016;16(1):59-74 - PubMed
  23. Endocrinology. 1988 Jun;122(6):2764-70 - PubMed
  24. J Neurosci Res. 2004 Apr 1;76(1):20-34 - PubMed
  25. J Neuroimmunol. 2002 Jun;127(1-2):115-26 - PubMed
  26. J Neurosci. 2006 Jan 18;26(3):981-90 - PubMed
  27. J Neuroimmunol. 1999 Aug 3;98(2):185-200 - PubMed
  28. J Neuroimmune Pharmacol. 2012 Jun;7(2):306-18 - PubMed
  29. J Neurochem. 1999 Dec;73(6):2348-57 - PubMed
  30. J Mol Endocrinol. 2007 Mar;38(3):365-76 - PubMed
  31. J Neurosci. 2012 Dec 5;32(49):17725-39 - PubMed
  32. Glia. 2003 Apr 15;42(2):139-48 - PubMed
  33. J Neurosci. 2005 Apr 27;25(17):4279-87 - PubMed
  34. Prog Neurobiol. 2008 Feb;84(2):116-31 - PubMed
  35. J Neurosci Res. 2004 Apr 1;76(1):35-50 - PubMed
  36. Stem Cells. 2004;22(1):109-18 - PubMed
  37. Pharmacol Ther. 1999 Mar;81(3):163-221 - PubMed
  38. J Immunol. 2014 Aug 15;193(4):1895-910 - PubMed
  39. Proc Natl Acad Sci U S A. 1986 Sep;83(18):7104-8 - PubMed
  40. Nat Neurosci. 2001 Jul;4(7):702-10 - PubMed
  41. Nature. 1996 Aug 29;382(6594):829-33 - PubMed
  42. Brain Res. 2001 Apr 6;897(1-2):204-6 - PubMed
  43. Brain Res. 1999 Feb 6;818(1):168-70 - PubMed
  44. Proc Natl Acad Sci U S A. 1999 Jul 6;96(14):8212-6 - PubMed
  45. Neuropharmacology. 1996;35(12):1737-42 - PubMed
  46. Proc Natl Acad Sci U S A. 1998 Nov 24;95(24):14500-5 - PubMed
  47. Immunol Rev. 2000 Oct;177:175-84 - PubMed
  48. Antimicrob Agents Chemother. 2015 Oct 19;60(1):168-79 - PubMed
  49. J Biol Chem. 1997 May 2;272(18):12116-21 - PubMed
  50. Science. 1990 Apr 20;248(4953):364-7 - PubMed
  51. Exp Neurol. 1999 Sep;159(1):124-30 - PubMed
  52. J Neurosci. 1989 Sep;9(9):3169-75 - PubMed
  53. Trends Neurosci. 1999 Nov;22(11):504-12 - PubMed
  54. Prog Neurobiol. 2013 May;104:67-92 - PubMed

Publication Types

Grant support